The global well-posedness and large time behavior of solutions for the Cauchy problem of the three-dimensional generalized Navier-Stokes equations are studied. We first construct a local continuous solution, then by combining some a priori estimates and the continuity argument, the local continuous solution is extended to all $ t>0 $ step by step provided that the initial data is sufficiently small. In addition, by using Strauss's inequality, generalized interpolation type lemma and a bootstrap argument, we establish the $ L^p $ decay estimate for the solution $ u(\cdot,t) $ and all its derivatives for generalized Navier-Stokes equations with $ \max\{1,\frac{3+q}6\}<\alpha\leq\frac12+\min\{\frac3q-\frac3p,\frac3{2p}\} $.
Citation: |
[1] | L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831. doi: 10.1002/cpa.3160350604. |
[2] | D. Chae and J. Lee, On the global well-posedness and stability of the Navier-Stokes and the related equations,, [Contributions to Current Challenges in Mathematical Fluid Mechanics], in Adv. Math. Fluid Mech., Birkhäuser, Basel, (2004), 31–51. |
[3] | P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal., 30 (1999), 937-948. doi: 10.1137/S0036141098337333. |
[4] | X. Ding and J. Wang, Global solution for a semilinear parabolic system, Acta Math. Sci. (English Ed.), 3 (1983), 397-414. doi: 10.1016/S0252-9602(18)30621-0. |
[5] | J. Fan, Y. Fukumoto and Y. Zhou, Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations, Kinet. Relat. Models, 6 (2013), 545-556. doi: 10.3934/krm.2013.6.545. |
[6] | A. Friedman, Partial Differential Equations, Holt, Reinhart and Winston, New York, 1969. |
[7] | D. Hoff and J. A. Smooler, Global existence for systems of parabolic conservation laws in several space variables, J. Differential Equations, 68 (1987), 210-220. doi: 10.1016/0022-0396(87)90192-6. |
[8] | D. Hoff and J. A. Smooler, Solutions in the large for certain nonlinear parabolic systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 213-235. doi: 10.1016/S0294-1449(16)30403-6. |
[9] | Z. Jiang, Asymptotic behavior of strong solutions to the 3D Navier-Stokes equations with a nonlinear damping term, Nonlinear Anal., 75 (2012), 5002-5009. doi: 10.1016/j.na.2012.04.014. |
[10] | Z. Jiang and J. Fan, Time decay rate for two 3D magnetohydrodynamics-$\alpha$ models, Math. Methods Appl. Sci., 37 (2014), 838-845. doi: 10.1002/mma.2840. |
[11] | Q. Jiu and H. Yu, Decay of solutions to the three-dimensional generalized Navier-Stokes equations, Asymptot. Anal., 94 (2015), 105-124. doi: 10.3233/ASY-151307. |
[12] | T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in $\mathbb{R}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480. doi: 10.1007/BF01174182. |
[13] | I. Kukavica, Space-time decay for solutions of the Navier-Stokes equations, Indiana Univ. Math. J., 50 (2001), 205-222. doi: 10.1512/iumj.2001.50.2084. |
[14] | I. Kukavica and J. J. Torres, Weighted bounds for the velocity and the vorticity for the Navier-Stokes equations, Nonlinearity, 19 (2006), 293-303. doi: 10.1088/0951-7715/19/2/003. |
[15] | N. H. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyperdissipation, Geom. Funct. Anal., 12 (2002), 355-379. doi: 10.1007/s00039-002-8250-z. |
[16] | H.-O. Kreiss, T. Hagstrom, J. Lorenz and P. Zingano, Decay in time of incompressible flows, J. Math. Fluid Mech., 5 (2003), 231-244. doi: 10.1007/s00021-003-0079-1. |
[17] | J. Leray, Étude de diverses équations integrales non lineaires et de quelques problémes que pose l'hydrodynamique, Thèses de l'entre-deux-guerres, 142 (1933), 88pp. |
[18] | J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248. doi: 10.1007/BF02547354. |
[19] | P. Li and Z. Zhai, Well-posedness and regularity of generalized Navier-Stokes equations in some critical $Q$-spaces, J. Funct. Anal., 259 (2010), 2457-2519. doi: 10.1016/j.jfa.2010.07.013. |
[20] | J.-L. Lions, Quelques Méthodes De Résolution Des Problémes Aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. |
[21] | Q. Liu and J. Zhao, Global well-posedness for the generalized magneto-hydrodynamic equations in the critical Fourier-Herz spaces, J. Math. Anal. Appl., 420 (2014), 1301-1315. doi: 10.1016/j.jmaa.2014.06.031. |
[22] | Q. Liu, J. Zhao and S. Cui, Existence and regularizing rate estimates of solutions to a generalized magneto-hydrodynamic system in pseudomeasure spaces, Ann. Mat. Pura Appl. (4), 191 (2012), 293-309. doi: 10.1007/s10231-010-0184-8. |
[23] | S. Liu, F. Wang and H. Zhao, Global existence and asymptotics of solutions of the Cahn-Hilliard equation, J. Differential Equations, 238 (2007), 426-469. doi: 10.1016/j.jde.2007.02.014. |
[24] | C. Miao, B. Yuan and B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations, Nonlinear Anal., 68 (2008), 461-484. doi: 10.1016/j.na.2006.11.011. |
[25] | M. E. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 88 (1985), 209-222. doi: 10.1007/BF00752111. |
[26] | M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations, Comm. Partial Differential Equations, 11 (1986), 733-763. doi: 10.1080/03605308608820443. |
[27] | E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, USA, 1970. |
[28] | W. A. Strauss, Decay and asymptotic for $u_tt-\Delta u=F(u)$, J. Funct. Anal., 2 (1968), 409-457. doi: 10.1016/0022-1236(68)90004-9. |
[29] | S. Weng, Remarks on asymptotic behaviors of strong solutions to a viscous Boussinesq system, Math. Method Appl. Sci., 39 (2016), 4398-4418. doi: 10.1002/mma.3868. |
[30] | M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on $\mathbb{R}^n$, J. London Math. Soc., 35 (1987), 303-313. doi: 10.1112/jlms/s2-35.2.303. |
[31] | J. Wu, Generalized MHD equations, J. Differential Equations, 195 (2003), 284-312. doi: 10.1016/j.jde.2003.07.007. |
[32] | J. Wu, Regularity criteria for the generalized MHD equations, Comm. Partial Differential Equations, 33 (2008), 285-306. doi: 10.1080/03605300701382530. |
[33] | Z. Ye, Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations, Ann. Mat. Pura Appl. (4), 195 (2016), 1111-1121. doi: 10.1007/s10231-015-0507-x. |
[34] | Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 491-505. doi: 10.1016/j.anihpc.2006.03.014. |
[35] | Y. Zhou, A remark on the decay of solutions to the 3-D Navier-Stokes equations, Math. Methods Appl. Sci., 30 (2007), 1223-1229. doi: 10.1002/mma.841. |
[36] | Y. Zhou, Asymptotic behaviour of the solutions to the 2D dissipative quasi-geostrophic flows, Nonlinearity, 21 (2008), 2061-2071. doi: 10.1088/0951-7715/21/9/008. |