[1]
|
H. Alfvén, Existence of electromagnetic-hydrodynamic waves, Nature, 150 (1942), 3763-3767.
|
[2]
|
L. Barleon, V. Casal and L. Lenhart, MHD flow in liquid-metal-cooled blankets, Fusion Eng. Des., 14 (1991), 401-412.
|
[3]
|
J. D. Barrow, R. Maartens and C. G. Tsagas, Cosmology with inhomogeneous magnetic fields, Phys. Rep., 449 (2007), 131-171.
doi: 10.1016/j.physrep.2007.04.006.
|
[4]
|
R. Bermejo, P. Galán del Sastre and L. Saavedra, A second order in time modified Lagrange-Galerkin finite element method for the incompressible Navier-Stokes equations, SIAM J. Numer. Anal., 50 (2012), 3084-3109.
doi: 10.1137/11085548X.
|
[5]
|
P. Bodenheimer, G. P. Laughlin, M. Różyczka and H. W. Yorke, Numerical Methods in Astrophysics, Series in Astronomy and Astrophysics, Taylor and Francis, New York, 2007.
|
[6]
|
M. A. Case, A. Labovsky, L. G. Rebholz and N. E. Wilson, A high physical accuracy method for incompressible magnetohydrodynamics, Int. J. Numer. Anal. Model. ser. B, 1 (2010), 217-236.
|
[7]
|
D. Catania, Global existence for a regularized magnetohydrodynamic-$\alpha$ model, Ann. Univ. Ferrara., 56 (2010), 1-20.
doi: 10.1007/s11565-009-0069-1.
|
[8]
|
P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511626333.
|
[9]
|
E. Dormy and A. M. Soward, Mathematical Aspects of Natural Dynamos, , Fluid Mechanics of Astrophysics and Geophysics, Grenoble Sciences, vol. 13, Universite Joseph Fourier, Grenoble, 2007.
doi: 10.1201/9781420055269.
|
[10]
|
M. A. Ebrahimi, M. Holst and E. Lunasin, The Navier-Stokes-Voight model for image inpainting, IMA J. Appl. Math., 78 (2013), 869-894.
doi: 10.1093/imamat/hxr069.
|
[11]
|
J. A. Font, General relativistic hydrodynamics and magnetohydrodynamics: Hyperbolic systems in relativistic astrophysics, Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2008, 3–17.
doi: 10.1007/978-3-540-75712-2_1.
|
[12]
|
J. F. Gerbeau, C. L. Bris and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Oxford University Press, Oxford, 2006.
|
[13]
|
M. Gunzburger, A. Meir and J. Peterson, On the existence, uniquess and finite element approximation of solutions of the equations of sationary, incompressible magnetohydrodynamic, Math. Comput., 56 (1991), 523-563.
doi: 10.1090/S0025-5718-1991-1066834-0.
|
[14]
|
H. Hashizume, Numerical and experimental research to solve MHD problem in liquid blanket system, Fusion Eng. Des., 81 (2006), 1431-1438.
doi: 10.1016/j.fusengdes.2005.08.086.
|
[15]
|
J. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes equations, Ⅳ: Error analysis for second order time discretizations, SIAM J. Numer. Anal., 27 (1990), 353-384.
doi: 10.1137/0727022.
|
[16]
|
W. Hillebrandt and F. Kupka, Interdisciplinary Aspects of Turbulence, , Lecture Notes in Physics, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-78961-1.
|
[17]
|
N. Jiang, M. Kubacki, W. Layton, M. Moraiti and H. Tran, A Crank-Nicolson Leapfrog stabilization: Unconditional stability and two applications, J. Comput. Appl. Math., 281 (2015), 263-276.
doi: 10.1016/j.cam.2014.09.026.
|
[18]
|
V. K. Kalantarov, B. Levant and E. S. Titi, Gevrey regularity for the attractor of the 3D Navier-Stokes-Voight equations, J. Nonlinear Sci., 19 (2009), 133-152.
doi: 10.1007/s00332-008-9029-7.
|
[19]
|
B. Khouider and E. Titi, An inviscid regularization for the surface quasi-geostrophic equation, Comm. Pure Appl. Math., 61 (2008), 1331-1346.
doi: 10.1002/cpa.20218.
|
[20]
|
P. Kuberry, A. Larios, L. Rebholz and N. Wilson, Numerical approximation of the Voigt regularization for incompressible Navier-Stokes and magnetohydrodynamic flows, Comput. Math. Appl., 64 (2012), 2647-2662.
doi: 10.1016/j.camwa.2012.07.010.
|
[21]
|
A. Labovsky, W. Layton, C. Manica, M. Neda and L. Rebholz, The stabilized extrapolated trapezoidal finite element method for the Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 198 (2009), 958-974.
doi: 10.1016/j.cma.2008.11.004.
|
[22]
|
A. Larios, E. Lunasin and E. S. Titi, Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion, J. Differ. Equ., 255 (2013), 2636-2654.
doi: 10.1016/j.jde.2013.07.011.
|
[23]
|
A. Larios and E. S. Titi, On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 603-627.
doi: 10.3934/dcdsb.2010.14.603.
|
[24]
|
A. Larios and E. S. Titi, Higher-order global regularity of an inviscid Voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic equations, J. Math. Fluid Mech., 16 (2014), 59-76.
doi: 10.1007/s00021-013-0136-3.
|
[25]
|
W. Layton and C. Trenchea, Stability of two IMEX methods, CNLF and BDF2-AB2, for uncoupling systems of evolution equations, Appl. Numer. Math., 62 (2012), 112-120.
doi: 10.1016/j.apnum.2011.10.006.
|
[26]
|
B. Levant, F. Ramos and E. S. Titi, On the statistical properties of the 3D incompressible Navier-Stokes-Voigt model, Commun. Math. Sci., 8 (2010), 277-293.
doi: 10.4310/CMS.2010.v8.n1.a14.
|
[27]
|
T. Lin, J. Gilbert, R. Kossowsky and P. College, Sea-Water Magnetohydrodynamic Propulsion for Next-Generation Undersea Vehicles, Defens Technical Information Center, 1990.
|
[28]
|
X. L. Lu and P. Z. Huang, Unconditional stability of fully discrete scheme for the Kelvin-Voigt model, Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys., 81 (2019), 137-142.
|
[29]
|
X. L. Lu, L. Zhang and P. Z. Huang, A fully discrete finite element scheme for the Kelvin-Voigt model, Filomat, 33 (2019), 5813-5827.
doi: 10.2298/FIL1918813L.
|
[30]
|
X. L. Lu and P. Z. Huang, A modular grad-div stabilization for the 2D/3D nonstationary incompressible magnetohydrodynamic equations, J. Sci. Comput., 82 (2020), Paper No. 3, 24 pp.
doi: 10.1007/s10915-019-01114-x.
|
[31]
|
R. Moreau, Magneto-hydrodynamics, Kluwer Academic Publishers, Dordrecht, 1990.
|
[32]
|
B. Punsly, Black Hole Gravitohydromagnetics, Astrophysics and Space Science Library, Springer-Verlag, Berlin, 2008.
|
[33]
|
F. Ramos and E. S. Titi, Invariant measure for the 3D Navier-Stokes-Voigt equations and their Navier-Stokes limit, Discrete Contin. Dyn. Syst., 28 (2010), 375-403.
doi: 10.3934/dcds.2010.28.375.
|
[34]
|
S. Smolentsev, R. Moreau, L. Bühler and C. Mistrangelo, MHD thermofluid issues of liquid-metal blankets: Phenomena and advances, Fusion Eng. Des., 85 (2010), 1196-1205.
doi: 10.1016/j.fusengdes.2010.02.038.
|
[35]
|
P. Wang, P. Huang and J. Wu, Superconvergence of the stationary incompressible magnetohydrodynamics equations, Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys., 80 (2018), 281-292.
|
[36]
|
L. Wang, J. Li and P. Z. Huang, An efficient two-level algorithm for the 2D/3D stationary incompressible magnetohydrodynamics based on the finite element method, Int. Commun. Heat Mass Transf., 98 (2018), 183-190.
doi: 10.1016/j.icheatmasstransfer.2018.02.019.
|
[37]
|
J. Yang, Y. N. He and G. Zhang, On an efficient second order backward difference Newton scheme for MHD system, J. Math. Anal. Appl., 458 (2018), 676-714.
doi: 10.1016/j.jmaa.2017.09.024.
|
[38]
|
G. D. Zhang and Y. N. He, Decoupled schemes for unsteady MHD equations Ⅱ: Finite element spatial discretization and numerical implementation, Comput. Math. Appl., 69 (2015), 1390-1406.
doi: 10.1016/j.camwa.2015.03.019.
|
[39]
|
G. D. Zhang, J. J. Yang and C. J. Bi, Second order unconditionally convergent and energy stable linearized scheme for MHD equations, Adv. Comput. Math., 44 (2018), 505-540.
doi: 10.1007/s10444-017-9552-x.
|