• Previous Article
    Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields
  • DCDS-B Home
  • This Issue
  • Next Article
    Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows
February  2021, 26(2): 847-860. doi: 10.3934/dcdsb.2020144

Chaos control in a special pendulum system for ultra-subharmonic resonance

1. 

School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan 411201, China

2. 

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

* Corresponding author: Xianwei Chen

Received  January 2019 Revised  December 2019 Published  February 2021 Early access  May 2020

Fund Project: This work is supported by the Province Natural Science Foundation of Hunan (No. 2018JJ2110)

In this paper, we study the chaos control of pendulum system with vibration of suspension axis for ultra-subharmonic resonance by using Melnikov methods, and give a necessary condition for controlling heteroclinic chaos and homoclinic chaos, respectively. We give some bifurcation diagrams by numerical simulations, which indicate that the chaos behaviors for ultra-subharmonic resonance may be inhibited to periodic orbits by adjusting phase-difference of parametric excitation, and prove that results obtained are very effective in inhibiting chaos for ultra-subharmonic resonance.

Citation: Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144
References:
[1]

T. S. Amer, The dynamical behavior of a rigid body relative equilibrium position, Advances in Mathematical Physics, 2017 (2017), Art. ID 8070525, 13pages. doi: 10.1155/2017/8070525.

[2]

S. R. Bishop and M. J. Clifford, Zones of chaotic behavior in the parametrically exicited pendulum, J. Sound Vibration, 181 (1996), 142-147.  doi: 10.1006/jsvi.1996.0011.

[3]

Y. Braiman and I. Goldhirsch, Taming chaotic dynamics with weak periodic perturbation, Phys. Rev. Lett., 66 (1991), 2545-2548.  doi: 10.1103/PhysRevLett.66.2545.

[4]

H. J. CaoX. B. Chi and G. R. Chen, Suppressing or inducing chaos by weak resonant excitations in an externally-forced froude pendulum, Int. J. Bifurcat. Chaos, 14 (2004), 1115-1120.  doi: 10.1142/S0218127404009673.

[5]

R. Chacón, Natural symmetries and regularization by means of weak parametric modulations in the forced pendulum, Phys. Rev. E, 52 (1995), 2330-2337.  doi: 10.1103/PhysRevE.52.2330.

[6]

R. ChacónF. Palmero and F. Balibrea, Taming chaos in a driven Josephson junction, Int. J. Bifurcat. Chaos, 11 (2001), 1897-1909. 

[7]

R. Chacón, Relative effectiveness of weak periodic excitations in suppressing homoclinic heteroclinic chaos, Eur. Phys. J. B, 65 (2002), 207-210. 

[8]

L. J. Chen and J. B. Li, Chaotic behavior and subharmonic bifurcations for a rotating predulum equation, Int. J. Bifurcation Chaos, 14 (2004), 3477-3488.  doi: 10.1142/S0218127404011478.

[9]

X. W. Chen and Z. J. Jing, Complex dynamics in a pendulum equation with a phase shift, Int. J. Bifurcat. Chaos, 22 (2012), 1250307, 40 pp. doi: 10.1142/S0218127412503075.

[10]

X. W. ChenZ. J. Jing and X. L. Fu, Chaos control in a pendulum system with excitations and phase shift, Nonlinear Dyn., 78 (2014), 317-327.  doi: 10.1007/s11071-014-1441-y.

[11]

X. W. ChenZ. J. Jing and X. L. Fu, Chaos control in a pendulum system with excitations, Discrete and Continuous Dynamical Systems Series B, 20 (2015), 373-383.  doi: 10.3934/dcdsb.2015.20.373.

[12]

M. J. Clifford and S. R. Bishop, Approximating the escape zone for the parametrically excited pendulum, J. Sound Vibr., 172 (1994), 572-576.  doi: 10.1006/jsvi.1994.1199.

[13]

M. J. Clifford and S. R. Bishop, Rotating periodic orbits of parametrically excited pendulum, Phys. Lett. A, 201 (1995), 191-196.  doi: 10.1016/0375-9601(95)00255-2.

[14]

D. D. A. Costa and M. A. Savi, Nonlinear dynamics of an SMA-pendulum system, Nonlinear Dynamics, 87 (2017), 1617-1627.  doi: 10.1007/s11071-016-3137-y.

[15]

D. D. A. Costa and M. A. Savi, Chaos control of an SMA–pendulum system using thermal actuation with extended time-delayed feedback approach, Nonlinear Dynamics, 93 (2018), 571-583.  doi: 10.1007/s11071-018-4210-5.

[16]

D. D'HumieresM. R. BeasleyB. A. Huberman and A. F. Libchaber, Chaotic states and routes to chaos in the forced pendulum, Phys. Rev. A, 26 (1982), 3483-3492.  doi: 10.1103/PhysRevA.26.3483.

[17]

W. X. DingH. Q. SheW. Huang and C. X. Yu, Controlling chaos in a discharge plasma, Phys. Rev. Lett., 72 (1994), 96-99.  doi: 10.1103/PhysRevLett.72.96.

[18]

W. L. Ditto, S. N. Rauseo and M. L. Spano, Experimental control of chaos, Controlling Chaos, (1996), 105–107. doi: 10.1016/B978-012396840-1/50035-7.

[19]

X. L. FuJ. Deng and Z. J. Jing, Complex dynamics in physical pendulum equation with suspension axis vibrations, Acta Mathematica Applicatae Sinica, English series, 26 (2010), 55-78.  doi: 10.1007/s10255-008-8276-6.

[20]

W. Garira and S. R. Bishop, Rotating solutions of the parametrically excited pendulum, J. Sound Vibr., 263 (2003), 233-239.  doi: 10.1016/S0022-460X(02)01435-9.

[21]

Z. J. JingK. Y. ChanD. S. Xu and H. J. Cao, Bifurcation of periodic solutions and chaos in Josephson system, Discr. Contin. Dyn. Syst.-Series A, 7 (2001), 573-592.  doi: 10.3934/dcds.2001.7.573.

[22]

Z. J. Jing and H. J. Chao, Bifurcation of periodic orbits in Josephson equation with a phase shift, Int. J. Bifurcation and Chaos, 12 (2002), 1515-1530.  doi: 10.1142/S0218127402005261.

[23]

Z. J. Jing and J. P. Yang, Complex dynamics in pendulum equation with parametric and external excitations (Ⅰ), Int. J. Bifurcat. Chaos, 16 (2006), 2887-2902.  doi: 10.1142/S0218127406016525.

[24]

Z. J. Jing and J. P. Yang, Complex dynamics in pendulum equation with parametric and external excitations (Ⅱ), Int. J. Bifurcat. Chaos, 16 (2006), 3053-3078.  doi: 10.1142/S0218127406016653.

[25]

T. Kapitaniak, Introduction, Chaos Solitons Fractals, 15 (2003), 201-203. 

[26]

M. Lakshman and K. Murall, Chaos in Nonlinear Oscillations–Controlling and Synchronization, , Singapore: World Scientific, 1996.

[27]

P. S. Landa, Regular and Chaotic Oscillations, Spring-Verlag, 2001.

[28]

M. LeviF. Hoppensteadt and W. Miranke, Dynamics of the Josephson junction, Quart. Appl. Math., 36 (1978), 167-198.  doi: 10.1090/qam/484023.

[29]

Z. H. Liu and W. Q. Zhu, Homoclinic bifurcation and chaos in simple pendulum under bounded noise excitation, Chaos Solit. Fract., 20 (2004), 593-607.  doi: 10.1016/j.chaos.2003.08.010.

[30]

R. Lima and M. Pettine, Suppression of chaos by resonant parametric perturbations, Phys. Rev. A, 41 (1990), 726-733.  doi: 10.1103/PhysRevA.41.726.

[31] A. PikovskyM. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, 2001.  doi: 10.1017/CBO9780511755743.
[32]

S. N. Rasband, Chaotic Dynamics of Nonlinear Systems, John Wiley, New York, 1990.

[33]

E. S. RuslanF. Alexander and L. Daniel, Energy control of a pendulum with quantized feedback, Automatica, 67 (2016), 171-177.  doi: 10.1016/j.automatica.2016.01.019.

[34]

M. Salerno, Suppression of phase-locking chaos in long Josephson junctions by biharmonic microwave fields, Phys. Rev. B, 44 (1991), 2720-2726.  doi: 10.1103/PhysRevB.44.2720.

[35]

M. Salerno and M. R. Samuelsen, Stabilization of chaotic phase locked dynamics in long Josephson junctions, Phys. Lett. A, 190 (1994), 177-181.  doi: 10.1016/0375-9601(94)90073-6.

[36]

R. Q. Wang and Z. J. Jing, Chaos control of chaotic pendulum system, Chaos, Solitons and Fractals, 21 (2004), 201-207.  doi: 10.1016/j.chaos.2003.10.011.

[37]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, 1990. doi: 10.1007/978-1-4757-4067-7.

[38]

K. Yagasaki and T. Uozumi, Controlling chaos in a pendulum subjected to feedforward and feedback control, Int. J. Bifurcation and Chaos, 7 (1997), 2827-2835.  doi: 10.1142/S0218127497001904.

[39]

J. P. Yang and Z. J. Jing, Inhibition of chaos in a pendulum equation, Chaos, Solitons and Fractals, 35 (2008), 726-737.  doi: 10.1016/j.chaos.2006.05.065.

[40]

J. P. Yang and Z. J. Jing, Control of chaos in a three-well duffing system, Chaos, Solitons and Fractals, 41 (2009), 1311-1328.  doi: 10.1016/j.chaos.2008.05.018.

[41]

J. P. Yang and Z. J. Jing, Controlling in a pendulum equation with ultra-subharmonic resonances, Chaos, Solitons and Fractals, 42 (2009), 1214-1226.  doi: 10.1016/j.chaos.2009.03.035.

show all references

References:
[1]

T. S. Amer, The dynamical behavior of a rigid body relative equilibrium position, Advances in Mathematical Physics, 2017 (2017), Art. ID 8070525, 13pages. doi: 10.1155/2017/8070525.

[2]

S. R. Bishop and M. J. Clifford, Zones of chaotic behavior in the parametrically exicited pendulum, J. Sound Vibration, 181 (1996), 142-147.  doi: 10.1006/jsvi.1996.0011.

[3]

Y. Braiman and I. Goldhirsch, Taming chaotic dynamics with weak periodic perturbation, Phys. Rev. Lett., 66 (1991), 2545-2548.  doi: 10.1103/PhysRevLett.66.2545.

[4]

H. J. CaoX. B. Chi and G. R. Chen, Suppressing or inducing chaos by weak resonant excitations in an externally-forced froude pendulum, Int. J. Bifurcat. Chaos, 14 (2004), 1115-1120.  doi: 10.1142/S0218127404009673.

[5]

R. Chacón, Natural symmetries and regularization by means of weak parametric modulations in the forced pendulum, Phys. Rev. E, 52 (1995), 2330-2337.  doi: 10.1103/PhysRevE.52.2330.

[6]

R. ChacónF. Palmero and F. Balibrea, Taming chaos in a driven Josephson junction, Int. J. Bifurcat. Chaos, 11 (2001), 1897-1909. 

[7]

R. Chacón, Relative effectiveness of weak periodic excitations in suppressing homoclinic heteroclinic chaos, Eur. Phys. J. B, 65 (2002), 207-210. 

[8]

L. J. Chen and J. B. Li, Chaotic behavior and subharmonic bifurcations for a rotating predulum equation, Int. J. Bifurcation Chaos, 14 (2004), 3477-3488.  doi: 10.1142/S0218127404011478.

[9]

X. W. Chen and Z. J. Jing, Complex dynamics in a pendulum equation with a phase shift, Int. J. Bifurcat. Chaos, 22 (2012), 1250307, 40 pp. doi: 10.1142/S0218127412503075.

[10]

X. W. ChenZ. J. Jing and X. L. Fu, Chaos control in a pendulum system with excitations and phase shift, Nonlinear Dyn., 78 (2014), 317-327.  doi: 10.1007/s11071-014-1441-y.

[11]

X. W. ChenZ. J. Jing and X. L. Fu, Chaos control in a pendulum system with excitations, Discrete and Continuous Dynamical Systems Series B, 20 (2015), 373-383.  doi: 10.3934/dcdsb.2015.20.373.

[12]

M. J. Clifford and S. R. Bishop, Approximating the escape zone for the parametrically excited pendulum, J. Sound Vibr., 172 (1994), 572-576.  doi: 10.1006/jsvi.1994.1199.

[13]

M. J. Clifford and S. R. Bishop, Rotating periodic orbits of parametrically excited pendulum, Phys. Lett. A, 201 (1995), 191-196.  doi: 10.1016/0375-9601(95)00255-2.

[14]

D. D. A. Costa and M. A. Savi, Nonlinear dynamics of an SMA-pendulum system, Nonlinear Dynamics, 87 (2017), 1617-1627.  doi: 10.1007/s11071-016-3137-y.

[15]

D. D. A. Costa and M. A. Savi, Chaos control of an SMA–pendulum system using thermal actuation with extended time-delayed feedback approach, Nonlinear Dynamics, 93 (2018), 571-583.  doi: 10.1007/s11071-018-4210-5.

[16]

D. D'HumieresM. R. BeasleyB. A. Huberman and A. F. Libchaber, Chaotic states and routes to chaos in the forced pendulum, Phys. Rev. A, 26 (1982), 3483-3492.  doi: 10.1103/PhysRevA.26.3483.

[17]

W. X. DingH. Q. SheW. Huang and C. X. Yu, Controlling chaos in a discharge plasma, Phys. Rev. Lett., 72 (1994), 96-99.  doi: 10.1103/PhysRevLett.72.96.

[18]

W. L. Ditto, S. N. Rauseo and M. L. Spano, Experimental control of chaos, Controlling Chaos, (1996), 105–107. doi: 10.1016/B978-012396840-1/50035-7.

[19]

X. L. FuJ. Deng and Z. J. Jing, Complex dynamics in physical pendulum equation with suspension axis vibrations, Acta Mathematica Applicatae Sinica, English series, 26 (2010), 55-78.  doi: 10.1007/s10255-008-8276-6.

[20]

W. Garira and S. R. Bishop, Rotating solutions of the parametrically excited pendulum, J. Sound Vibr., 263 (2003), 233-239.  doi: 10.1016/S0022-460X(02)01435-9.

[21]

Z. J. JingK. Y. ChanD. S. Xu and H. J. Cao, Bifurcation of periodic solutions and chaos in Josephson system, Discr. Contin. Dyn. Syst.-Series A, 7 (2001), 573-592.  doi: 10.3934/dcds.2001.7.573.

[22]

Z. J. Jing and H. J. Chao, Bifurcation of periodic orbits in Josephson equation with a phase shift, Int. J. Bifurcation and Chaos, 12 (2002), 1515-1530.  doi: 10.1142/S0218127402005261.

[23]

Z. J. Jing and J. P. Yang, Complex dynamics in pendulum equation with parametric and external excitations (Ⅰ), Int. J. Bifurcat. Chaos, 16 (2006), 2887-2902.  doi: 10.1142/S0218127406016525.

[24]

Z. J. Jing and J. P. Yang, Complex dynamics in pendulum equation with parametric and external excitations (Ⅱ), Int. J. Bifurcat. Chaos, 16 (2006), 3053-3078.  doi: 10.1142/S0218127406016653.

[25]

T. Kapitaniak, Introduction, Chaos Solitons Fractals, 15 (2003), 201-203. 

[26]

M. Lakshman and K. Murall, Chaos in Nonlinear Oscillations–Controlling and Synchronization, , Singapore: World Scientific, 1996.

[27]

P. S. Landa, Regular and Chaotic Oscillations, Spring-Verlag, 2001.

[28]

M. LeviF. Hoppensteadt and W. Miranke, Dynamics of the Josephson junction, Quart. Appl. Math., 36 (1978), 167-198.  doi: 10.1090/qam/484023.

[29]

Z. H. Liu and W. Q. Zhu, Homoclinic bifurcation and chaos in simple pendulum under bounded noise excitation, Chaos Solit. Fract., 20 (2004), 593-607.  doi: 10.1016/j.chaos.2003.08.010.

[30]

R. Lima and M. Pettine, Suppression of chaos by resonant parametric perturbations, Phys. Rev. A, 41 (1990), 726-733.  doi: 10.1103/PhysRevA.41.726.

[31] A. PikovskyM. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, 2001.  doi: 10.1017/CBO9780511755743.
[32]

S. N. Rasband, Chaotic Dynamics of Nonlinear Systems, John Wiley, New York, 1990.

[33]

E. S. RuslanF. Alexander and L. Daniel, Energy control of a pendulum with quantized feedback, Automatica, 67 (2016), 171-177.  doi: 10.1016/j.automatica.2016.01.019.

[34]

M. Salerno, Suppression of phase-locking chaos in long Josephson junctions by biharmonic microwave fields, Phys. Rev. B, 44 (1991), 2720-2726.  doi: 10.1103/PhysRevB.44.2720.

[35]

M. Salerno and M. R. Samuelsen, Stabilization of chaotic phase locked dynamics in long Josephson junctions, Phys. Lett. A, 190 (1994), 177-181.  doi: 10.1016/0375-9601(94)90073-6.

[36]

R. Q. Wang and Z. J. Jing, Chaos control of chaotic pendulum system, Chaos, Solitons and Fractals, 21 (2004), 201-207.  doi: 10.1016/j.chaos.2003.10.011.

[37]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, 1990. doi: 10.1007/978-1-4757-4067-7.

[38]

K. Yagasaki and T. Uozumi, Controlling chaos in a pendulum subjected to feedforward and feedback control, Int. J. Bifurcation and Chaos, 7 (1997), 2827-2835.  doi: 10.1142/S0218127497001904.

[39]

J. P. Yang and Z. J. Jing, Inhibition of chaos in a pendulum equation, Chaos, Solitons and Fractals, 35 (2008), 726-737.  doi: 10.1016/j.chaos.2006.05.065.

[40]

J. P. Yang and Z. J. Jing, Control of chaos in a three-well duffing system, Chaos, Solitons and Fractals, 41 (2009), 1311-1328.  doi: 10.1016/j.chaos.2008.05.018.

[41]

J. P. Yang and Z. J. Jing, Controlling in a pendulum equation with ultra-subharmonic resonances, Chaos, Solitons and Fractals, 42 (2009), 1214-1226.  doi: 10.1016/j.chaos.2009.03.035.

Figure 1.  Phase portrait of system (2) for $ \alpha = 0.1 $.
Figure 2.  The chaotic attractor of system (1) for $ \alpha = 0.1, \; \omega = 1.5, \; \delta = 0.38, \; f_1 = 1.381 $, $ \gamma = 0.01 $ and $ f_0 = 0 $.
Figure 3.  The bifurcation diagram of system (1) in ($ \Psi $, x) plane for $ \alpha = 0.1 $, $ f_1 = 1.381 $, $ f_0 = 0.2 $, $ \delta = 0.38 $, $ \Omega = 0.75 $ and $ \omega = 1.5 $.
Figure 4.  The bifurcation diagram of system (1) in ($ \Psi $, x) plane for $ \alpha = 0.1 $, $ f_1 = 1.381 $, $ f_0 = 0.2 $, $ \delta = 0.38 $, $ \Omega = 0.5 $ and $ \omega = 1.5 $.
Figure 5.  The bifurcation diagram of system (1) in ($ \Psi $, x) plane for $ \alpha = 0.1 $, $ f_1 = 1.381 $, $ f_0 = 0.4 $, $ \delta = 0.38 $, $ \Omega = 1 $ and $ \omega = 1.5 $.
Figure 6.  The bifurcation diagram of system (1) in ($ \Psi $, x) plane for $ \alpha = 0.1 $, $ f_1 = 1.381 $, $ f_0 = 2 $, $ \delta = 0.38 $, $ \Omega = 0.75 $ and $ \omega = 1.5 $.
Figure 7.  The bifurcation diagram of system (1) in ($ \Psi $, x) plane for $ \alpha = 0.1 $, $ f_1 = 1.381 $, $ \delta = 0.38 $, $ \Omega = 0.5 $ and $ \omega = 1.5 $: (a) $ f_0 = 1 $; (b) $ f_0 = 4 $.
Figure 8.  The bifurcation diagram of system (1) in ($ \Psi $, x) plane for $ \alpha = 0.1 $, $ f_1 = 1.381 $, $ \delta = 0.38 $, $ \Omega = 1 $ and $ \omega = 1.5 $: (a) $ f_0 = 2 $; (b) $ f_0 = 2.5 $.
[1]

Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373

[2]

J. Alberto Conejero, Francisco Rodenas, Macarena Trujillo. Chaos for the Hyperbolic Bioheat Equation. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 653-668. doi: 10.3934/dcds.2015.35.653

[3]

Ting Yang. Homoclinic orbits and chaos in the generalized Lorenz system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1097-1108. doi: 10.3934/dcdsb.2019210

[4]

Carolina Mendoza, Jean Bragard, Pier Luigi Ramazza, Javier Martínez-Mardones, Stefano Boccaletti. Pinning control of spatiotemporal chaos in the LCLV device. Mathematical Biosciences & Engineering, 2007, 4 (3) : 523-530. doi: 10.3934/mbe.2007.4.523

[5]

Martin Wechselberger, Warren Weckesser. Homoclinic clusters and chaos associated with a folded node in a stellate cell model. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 829-850. doi: 10.3934/dcdss.2009.2.829

[6]

S. Jiménez, Pedro J. Zufiria. Characterizing chaos in a type of fractional Duffing's equation. Conference Publications, 2015, 2015 (special) : 660-669. doi: 10.3934/proc.2015.0660

[7]

Valentin Duruisseaux, Antony R. Humphries. Bistability, bifurcations and chaos in the Mackey-Glass equation. Journal of Computational Dynamics, 2022, 9 (3) : 421-450. doi: 10.3934/jcd.2022009

[8]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[9]

Louis-Pierre Chaintron, Antoine Diez. Propagation of chaos: A review of models, methods and applications. Ⅱ. Applications. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022018

[10]

Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2479-2497. doi: 10.3934/dcdsb.2020191

[11]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

[12]

Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 275-284. doi: 10.3934/dcdsb.2007.7.275

[13]

Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161

[14]

Y. Charles Li. Chaos phenotypes discovered in fluids. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1383-1398. doi: 10.3934/dcds.2010.26.1383

[15]

Kaijen Cheng, Kenneth Palmer. Chaos in a model for masting. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1917-1932. doi: 10.3934/dcdsb.2015.20.1917

[16]

Flaviano Battelli, Michal Fe?kan. Chaos in forced impact systems. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 861-890. doi: 10.3934/dcdss.2013.6.861

[17]

Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic and Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85

[18]

Kleber Carrapatoso. Propagation of chaos for the spatially homogeneous Landau equation for Maxwellian molecules. Kinetic and Related Models, 2016, 9 (1) : 1-49. doi: 10.3934/krm.2016.9.1

[19]

Kaijen Cheng, Kenneth Palmer, Yuh-Jenn Wu. Period 3 and chaos for unimodal maps. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1933-1949. doi: 10.3934/dcds.2014.34.1933

[20]

Piotr Oprocha. Specification properties and dense distributional chaos. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 821-833. doi: 10.3934/dcds.2007.17.821

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (234)
  • HTML views (294)
  • Cited by (0)

Other articles
by authors

[Back to Top]