# American Institute of Mathematical Sciences

## Chaos control in a special pendulum system for ultra-subharmonic resonance

 1 School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan 411201, China 2 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

* Corresponding author: Xianwei Chen

Received  January 2019 Revised  December 2019 Published  May 2020

Fund Project: This work is supported by the Province Natural Science Foundation of Hunan (No. 2018JJ2110)

In this paper, we study the chaos control of pendulum system with vibration of suspension axis for ultra-subharmonic resonance by using Melnikov methods, and give a necessary condition for controlling heteroclinic chaos and homoclinic chaos, respectively. We give some bifurcation diagrams by numerical simulations, which indicate that the chaos behaviors for ultra-subharmonic resonance may be inhibited to periodic orbits by adjusting phase-difference of parametric excitation, and prove that results obtained are very effective in inhibiting chaos for ultra-subharmonic resonance.

Citation: Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020144
##### References:

show all references

##### References:
Phase portrait of system (2) for $\alpha = 0.1$.
The chaotic attractor of system (1) for $\alpha = 0.1, \; \omega = 1.5, \; \delta = 0.38, \; f_1 = 1.381$, $\gamma = 0.01$ and $f_0 = 0$.
The bifurcation diagram of system (1) in ($\Psi$, x) plane for $\alpha = 0.1$, $f_1 = 1.381$, $f_0 = 0.2$, $\delta = 0.38$, $\Omega = 0.75$ and $\omega = 1.5$.
The bifurcation diagram of system (1) in ($\Psi$, x) plane for $\alpha = 0.1$, $f_1 = 1.381$, $f_0 = 0.2$, $\delta = 0.38$, $\Omega = 0.5$ and $\omega = 1.5$.
The bifurcation diagram of system (1) in ($\Psi$, x) plane for $\alpha = 0.1$, $f_1 = 1.381$, $f_0 = 0.4$, $\delta = 0.38$, $\Omega = 1$ and $\omega = 1.5$.
The bifurcation diagram of system (1) in ($\Psi$, x) plane for $\alpha = 0.1$, $f_1 = 1.381$, $f_0 = 2$, $\delta = 0.38$, $\Omega = 0.75$ and $\omega = 1.5$.
The bifurcation diagram of system (1) in ($\Psi$, x) plane for $\alpha = 0.1$, $f_1 = 1.381$, $\delta = 0.38$, $\Omega = 0.5$ and $\omega = 1.5$: (a) $f_0 = 1$; (b) $f_0 = 4$.
The bifurcation diagram of system (1) in ($\Psi$, x) plane for $\alpha = 0.1$, $f_1 = 1.381$, $\delta = 0.38$, $\Omega = 1$ and $\omega = 1.5$: (a) $f_0 = 2$; (b) $f_0 = 2.5$.
 [1] Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373 [2] J. Alberto Conejero, Francisco Rodenas, Macarena Trujillo. Chaos for the Hyperbolic Bioheat Equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 653-668. doi: 10.3934/dcds.2015.35.653 [3] Ting Yang. Homoclinic orbits and chaos in the generalized Lorenz system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1097-1108. doi: 10.3934/dcdsb.2019210 [4] Carolina Mendoza, Jean Bragard, Pier Luigi Ramazza, Javier Martínez-Mardones, Stefano Boccaletti. Pinning control of spatiotemporal chaos in the LCLV device. Mathematical Biosciences & Engineering, 2007, 4 (3) : 523-530. doi: 10.3934/mbe.2007.4.523 [5] Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387 [6] S. Jiménez, Pedro J. Zufiria. Characterizing chaos in a type of fractional Duffing's equation. Conference Publications, 2015, 2015 (special) : 660-669. doi: 10.3934/proc.2015.0660 [7] Martin Wechselberger, Warren Weckesser. Homoclinic clusters and chaos associated with a folded node in a stellate cell model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 829-850. doi: 10.3934/dcdss.2009.2.829 [8] Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020191 [9] Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757 [10] Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 275-284. doi: 10.3934/dcdsb.2007.7.275 [11] Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic & Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85 [12] Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161 [13] Y. Charles Li. Chaos phenotypes discovered in fluids. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1383-1398. doi: 10.3934/dcds.2010.26.1383 [14] Flaviano Battelli, Michal Fe?kan. Chaos in forced impact systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 861-890. doi: 10.3934/dcdss.2013.6.861 [15] Kaijen Cheng, Kenneth Palmer. Chaos in a model for masting. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1917-1932. doi: 10.3934/dcdsb.2015.20.1917 [16] Kleber Carrapatoso. Propagation of chaos for the spatially homogeneous Landau equation for Maxwellian molecules. Kinetic & Related Models, 2016, 9 (1) : 1-49. doi: 10.3934/krm.2016.9.1 [17] Kaijen Cheng, Kenneth Palmer, Yuh-Jenn Wu. Period 3 and chaos for unimodal maps. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1933-1949. doi: 10.3934/dcds.2014.34.1933 [18] Piotr Oprocha. Specification properties and dense distributional chaos. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 821-833. doi: 10.3934/dcds.2007.17.821 [19] Piotr Oprocha, Pawel Wilczynski. Distributional chaos via isolating segments. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 347-356. doi: 10.3934/dcdsb.2007.8.347 [20] Jaroslav Smítal, Marta Štefánková. Omega-chaos almost everywhere. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1323-1327. doi: 10.3934/dcds.2003.9.1323

2019 Impact Factor: 1.27

## Tools

Article outline

Figures and Tables