• Previous Article
    Stochastic modelling and analysis of harvesting model: Application to "summer fishing moratorium" by intermittent control
  • DCDS-B Home
  • This Issue
  • Next Article
    Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems
doi: 10.3934/dcdsb.2020144

Chaos control in a special pendulum system for ultra-subharmonic resonance

1. 

School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan 411201, China

2. 

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

* Corresponding author: Xianwei Chen

Received  January 2019 Revised  December 2019 Published  May 2020

Fund Project: This work is supported by the Province Natural Science Foundation of Hunan (No. 2018JJ2110)

In this paper, we study the chaos control of pendulum system with vibration of suspension axis for ultra-subharmonic resonance by using Melnikov methods, and give a necessary condition for controlling heteroclinic chaos and homoclinic chaos, respectively. We give some bifurcation diagrams by numerical simulations, which indicate that the chaos behaviors for ultra-subharmonic resonance may be inhibited to periodic orbits by adjusting phase-difference of parametric excitation, and prove that results obtained are very effective in inhibiting chaos for ultra-subharmonic resonance.

Citation: Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020144
References:
[1]

T. S. Amer, The dynamical behavior of a rigid body relative equilibrium position, Advances in Mathematical Physics, 2017 (2017), Art. ID 8070525, 13pages. doi: 10.1155/2017/8070525.  Google Scholar

[2]

S. R. Bishop and M. J. Clifford, Zones of chaotic behavior in the parametrically exicited pendulum, J. Sound Vibration, 181 (1996), 142-147.  doi: 10.1006/jsvi.1996.0011.  Google Scholar

[3]

Y. Braiman and I. Goldhirsch, Taming chaotic dynamics with weak periodic perturbation, Phys. Rev. Lett., 66 (1991), 2545-2548.  doi: 10.1103/PhysRevLett.66.2545.  Google Scholar

[4]

H. J. CaoX. B. Chi and G. R. Chen, Suppressing or inducing chaos by weak resonant excitations in an externally-forced froude pendulum, Int. J. Bifurcat. Chaos, 14 (2004), 1115-1120.  doi: 10.1142/S0218127404009673.  Google Scholar

[5]

R. Chacón, Natural symmetries and regularization by means of weak parametric modulations in the forced pendulum, Phys. Rev. E, 52 (1995), 2330-2337.  doi: 10.1103/PhysRevE.52.2330.  Google Scholar

[6]

R. ChacónF. Palmero and F. Balibrea, Taming chaos in a driven Josephson junction, Int. J. Bifurcat. Chaos, 11 (2001), 1897-1909.   Google Scholar

[7]

R. Chacón, Relative effectiveness of weak periodic excitations in suppressing homoclinic heteroclinic chaos, Eur. Phys. J. B, 65 (2002), 207-210.   Google Scholar

[8]

L. J. Chen and J. B. Li, Chaotic behavior and subharmonic bifurcations for a rotating predulum equation, Int. J. Bifurcation Chaos, 14 (2004), 3477-3488.  doi: 10.1142/S0218127404011478.  Google Scholar

[9]

X. W. Chen and Z. J. Jing, Complex dynamics in a pendulum equation with a phase shift, Int. J. Bifurcat. Chaos, 22 (2012), 1250307, 40 pp. doi: 10.1142/S0218127412503075.  Google Scholar

[10]

X. W. ChenZ. J. Jing and X. L. Fu, Chaos control in a pendulum system with excitations and phase shift, Nonlinear Dyn., 78 (2014), 317-327.  doi: 10.1007/s11071-014-1441-y.  Google Scholar

[11]

X. W. ChenZ. J. Jing and X. L. Fu, Chaos control in a pendulum system with excitations, Discrete and Continuous Dynamical Systems Series B, 20 (2015), 373-383.  doi: 10.3934/dcdsb.2015.20.373.  Google Scholar

[12]

M. J. Clifford and S. R. Bishop, Approximating the escape zone for the parametrically excited pendulum, J. Sound Vibr., 172 (1994), 572-576.  doi: 10.1006/jsvi.1994.1199.  Google Scholar

[13]

M. J. Clifford and S. R. Bishop, Rotating periodic orbits of parametrically excited pendulum, Phys. Lett. A, 201 (1995), 191-196.  doi: 10.1016/0375-9601(95)00255-2.  Google Scholar

[14]

D. D. A. Costa and M. A. Savi, Nonlinear dynamics of an SMA-pendulum system, Nonlinear Dynamics, 87 (2017), 1617-1627.  doi: 10.1007/s11071-016-3137-y.  Google Scholar

[15]

D. D. A. Costa and M. A. Savi, Chaos control of an SMA–pendulum system using thermal actuation with extended time-delayed feedback approach, Nonlinear Dynamics, 93 (2018), 571-583.  doi: 10.1007/s11071-018-4210-5.  Google Scholar

[16]

D. D'HumieresM. R. BeasleyB. A. Huberman and A. F. Libchaber, Chaotic states and routes to chaos in the forced pendulum, Phys. Rev. A, 26 (1982), 3483-3492.  doi: 10.1103/PhysRevA.26.3483.  Google Scholar

[17]

W. X. DingH. Q. SheW. Huang and C. X. Yu, Controlling chaos in a discharge plasma, Phys. Rev. Lett., 72 (1994), 96-99.  doi: 10.1103/PhysRevLett.72.96.  Google Scholar

[18]

W. L. Ditto, S. N. Rauseo and M. L. Spano, Experimental control of chaos, Controlling Chaos, (1996), 105–107. doi: 10.1016/B978-012396840-1/50035-7.  Google Scholar

[19]

X. L. FuJ. Deng and Z. J. Jing, Complex dynamics in physical pendulum equation with suspension axis vibrations, Acta Mathematica Applicatae Sinica, English series, 26 (2010), 55-78.  doi: 10.1007/s10255-008-8276-6.  Google Scholar

[20]

W. Garira and S. R. Bishop, Rotating solutions of the parametrically excited pendulum, J. Sound Vibr., 263 (2003), 233-239.  doi: 10.1016/S0022-460X(02)01435-9.  Google Scholar

[21]

Z. J. JingK. Y. ChanD. S. Xu and H. J. Cao, Bifurcation of periodic solutions and chaos in Josephson system, Discr. Contin. Dyn. Syst.-Series A, 7 (2001), 573-592.  doi: 10.3934/dcds.2001.7.573.  Google Scholar

[22]

Z. J. Jing and H. J. Chao, Bifurcation of periodic orbits in Josephson equation with a phase shift, Int. J. Bifurcation and Chaos, 12 (2002), 1515-1530.  doi: 10.1142/S0218127402005261.  Google Scholar

[23]

Z. J. Jing and J. P. Yang, Complex dynamics in pendulum equation with parametric and external excitations (Ⅰ), Int. J. Bifurcat. Chaos, 16 (2006), 2887-2902.  doi: 10.1142/S0218127406016525.  Google Scholar

[24]

Z. J. Jing and J. P. Yang, Complex dynamics in pendulum equation with parametric and external excitations (Ⅱ), Int. J. Bifurcat. Chaos, 16 (2006), 3053-3078.  doi: 10.1142/S0218127406016653.  Google Scholar

[25]

T. Kapitaniak, Introduction, Chaos Solitons Fractals, 15 (2003), 201-203.   Google Scholar

[26]

M. Lakshman and K. Murall, Chaos in Nonlinear Oscillations–Controlling and Synchronization, , Singapore: World Scientific, 1996. Google Scholar

[27]

P. S. Landa, Regular and Chaotic Oscillations, Spring-Verlag, 2001. Google Scholar

[28]

M. LeviF. Hoppensteadt and W. Miranke, Dynamics of the Josephson junction, Quart. Appl. Math., 36 (1978), 167-198.  doi: 10.1090/qam/484023.  Google Scholar

[29]

Z. H. Liu and W. Q. Zhu, Homoclinic bifurcation and chaos in simple pendulum under bounded noise excitation, Chaos Solit. Fract., 20 (2004), 593-607.  doi: 10.1016/j.chaos.2003.08.010.  Google Scholar

[30]

R. Lima and M. Pettine, Suppression of chaos by resonant parametric perturbations, Phys. Rev. A, 41 (1990), 726-733.  doi: 10.1103/PhysRevA.41.726.  Google Scholar

[31] A. PikovskyM. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, 2001.  doi: 10.1017/CBO9780511755743.  Google Scholar
[32]

S. N. Rasband, Chaotic Dynamics of Nonlinear Systems, John Wiley, New York, 1990.  Google Scholar

[33]

E. S. RuslanF. Alexander and L. Daniel, Energy control of a pendulum with quantized feedback, Automatica, 67 (2016), 171-177.  doi: 10.1016/j.automatica.2016.01.019.  Google Scholar

[34]

M. Salerno, Suppression of phase-locking chaos in long Josephson junctions by biharmonic microwave fields, Phys. Rev. B, 44 (1991), 2720-2726.  doi: 10.1103/PhysRevB.44.2720.  Google Scholar

[35]

M. Salerno and M. R. Samuelsen, Stabilization of chaotic phase locked dynamics in long Josephson junctions, Phys. Lett. A, 190 (1994), 177-181.  doi: 10.1016/0375-9601(94)90073-6.  Google Scholar

[36]

R. Q. Wang and Z. J. Jing, Chaos control of chaotic pendulum system, Chaos, Solitons and Fractals, 21 (2004), 201-207.  doi: 10.1016/j.chaos.2003.10.011.  Google Scholar

[37]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, 1990. doi: 10.1007/978-1-4757-4067-7.  Google Scholar

[38]

K. Yagasaki and T. Uozumi, Controlling chaos in a pendulum subjected to feedforward and feedback control, Int. J. Bifurcation and Chaos, 7 (1997), 2827-2835.  doi: 10.1142/S0218127497001904.  Google Scholar

[39]

J. P. Yang and Z. J. Jing, Inhibition of chaos in a pendulum equation, Chaos, Solitons and Fractals, 35 (2008), 726-737.  doi: 10.1016/j.chaos.2006.05.065.  Google Scholar

[40]

J. P. Yang and Z. J. Jing, Control of chaos in a three-well duffing system, Chaos, Solitons and Fractals, 41 (2009), 1311-1328.  doi: 10.1016/j.chaos.2008.05.018.  Google Scholar

[41]

J. P. Yang and Z. J. Jing, Controlling in a pendulum equation with ultra-subharmonic resonances, Chaos, Solitons and Fractals, 42 (2009), 1214-1226.  doi: 10.1016/j.chaos.2009.03.035.  Google Scholar

show all references

References:
[1]

T. S. Amer, The dynamical behavior of a rigid body relative equilibrium position, Advances in Mathematical Physics, 2017 (2017), Art. ID 8070525, 13pages. doi: 10.1155/2017/8070525.  Google Scholar

[2]

S. R. Bishop and M. J. Clifford, Zones of chaotic behavior in the parametrically exicited pendulum, J. Sound Vibration, 181 (1996), 142-147.  doi: 10.1006/jsvi.1996.0011.  Google Scholar

[3]

Y. Braiman and I. Goldhirsch, Taming chaotic dynamics with weak periodic perturbation, Phys. Rev. Lett., 66 (1991), 2545-2548.  doi: 10.1103/PhysRevLett.66.2545.  Google Scholar

[4]

H. J. CaoX. B. Chi and G. R. Chen, Suppressing or inducing chaos by weak resonant excitations in an externally-forced froude pendulum, Int. J. Bifurcat. Chaos, 14 (2004), 1115-1120.  doi: 10.1142/S0218127404009673.  Google Scholar

[5]

R. Chacón, Natural symmetries and regularization by means of weak parametric modulations in the forced pendulum, Phys. Rev. E, 52 (1995), 2330-2337.  doi: 10.1103/PhysRevE.52.2330.  Google Scholar

[6]

R. ChacónF. Palmero and F. Balibrea, Taming chaos in a driven Josephson junction, Int. J. Bifurcat. Chaos, 11 (2001), 1897-1909.   Google Scholar

[7]

R. Chacón, Relative effectiveness of weak periodic excitations in suppressing homoclinic heteroclinic chaos, Eur. Phys. J. B, 65 (2002), 207-210.   Google Scholar

[8]

L. J. Chen and J. B. Li, Chaotic behavior and subharmonic bifurcations for a rotating predulum equation, Int. J. Bifurcation Chaos, 14 (2004), 3477-3488.  doi: 10.1142/S0218127404011478.  Google Scholar

[9]

X. W. Chen and Z. J. Jing, Complex dynamics in a pendulum equation with a phase shift, Int. J. Bifurcat. Chaos, 22 (2012), 1250307, 40 pp. doi: 10.1142/S0218127412503075.  Google Scholar

[10]

X. W. ChenZ. J. Jing and X. L. Fu, Chaos control in a pendulum system with excitations and phase shift, Nonlinear Dyn., 78 (2014), 317-327.  doi: 10.1007/s11071-014-1441-y.  Google Scholar

[11]

X. W. ChenZ. J. Jing and X. L. Fu, Chaos control in a pendulum system with excitations, Discrete and Continuous Dynamical Systems Series B, 20 (2015), 373-383.  doi: 10.3934/dcdsb.2015.20.373.  Google Scholar

[12]

M. J. Clifford and S. R. Bishop, Approximating the escape zone for the parametrically excited pendulum, J. Sound Vibr., 172 (1994), 572-576.  doi: 10.1006/jsvi.1994.1199.  Google Scholar

[13]

M. J. Clifford and S. R. Bishop, Rotating periodic orbits of parametrically excited pendulum, Phys. Lett. A, 201 (1995), 191-196.  doi: 10.1016/0375-9601(95)00255-2.  Google Scholar

[14]

D. D. A. Costa and M. A. Savi, Nonlinear dynamics of an SMA-pendulum system, Nonlinear Dynamics, 87 (2017), 1617-1627.  doi: 10.1007/s11071-016-3137-y.  Google Scholar

[15]

D. D. A. Costa and M. A. Savi, Chaos control of an SMA–pendulum system using thermal actuation with extended time-delayed feedback approach, Nonlinear Dynamics, 93 (2018), 571-583.  doi: 10.1007/s11071-018-4210-5.  Google Scholar

[16]

D. D'HumieresM. R. BeasleyB. A. Huberman and A. F. Libchaber, Chaotic states and routes to chaos in the forced pendulum, Phys. Rev. A, 26 (1982), 3483-3492.  doi: 10.1103/PhysRevA.26.3483.  Google Scholar

[17]

W. X. DingH. Q. SheW. Huang and C. X. Yu, Controlling chaos in a discharge plasma, Phys. Rev. Lett., 72 (1994), 96-99.  doi: 10.1103/PhysRevLett.72.96.  Google Scholar

[18]

W. L. Ditto, S. N. Rauseo and M. L. Spano, Experimental control of chaos, Controlling Chaos, (1996), 105–107. doi: 10.1016/B978-012396840-1/50035-7.  Google Scholar

[19]

X. L. FuJ. Deng and Z. J. Jing, Complex dynamics in physical pendulum equation with suspension axis vibrations, Acta Mathematica Applicatae Sinica, English series, 26 (2010), 55-78.  doi: 10.1007/s10255-008-8276-6.  Google Scholar

[20]

W. Garira and S. R. Bishop, Rotating solutions of the parametrically excited pendulum, J. Sound Vibr., 263 (2003), 233-239.  doi: 10.1016/S0022-460X(02)01435-9.  Google Scholar

[21]

Z. J. JingK. Y. ChanD. S. Xu and H. J. Cao, Bifurcation of periodic solutions and chaos in Josephson system, Discr. Contin. Dyn. Syst.-Series A, 7 (2001), 573-592.  doi: 10.3934/dcds.2001.7.573.  Google Scholar

[22]

Z. J. Jing and H. J. Chao, Bifurcation of periodic orbits in Josephson equation with a phase shift, Int. J. Bifurcation and Chaos, 12 (2002), 1515-1530.  doi: 10.1142/S0218127402005261.  Google Scholar

[23]

Z. J. Jing and J. P. Yang, Complex dynamics in pendulum equation with parametric and external excitations (Ⅰ), Int. J. Bifurcat. Chaos, 16 (2006), 2887-2902.  doi: 10.1142/S0218127406016525.  Google Scholar

[24]

Z. J. Jing and J. P. Yang, Complex dynamics in pendulum equation with parametric and external excitations (Ⅱ), Int. J. Bifurcat. Chaos, 16 (2006), 3053-3078.  doi: 10.1142/S0218127406016653.  Google Scholar

[25]

T. Kapitaniak, Introduction, Chaos Solitons Fractals, 15 (2003), 201-203.   Google Scholar

[26]

M. Lakshman and K. Murall, Chaos in Nonlinear Oscillations–Controlling and Synchronization, , Singapore: World Scientific, 1996. Google Scholar

[27]

P. S. Landa, Regular and Chaotic Oscillations, Spring-Verlag, 2001. Google Scholar

[28]

M. LeviF. Hoppensteadt and W. Miranke, Dynamics of the Josephson junction, Quart. Appl. Math., 36 (1978), 167-198.  doi: 10.1090/qam/484023.  Google Scholar

[29]

Z. H. Liu and W. Q. Zhu, Homoclinic bifurcation and chaos in simple pendulum under bounded noise excitation, Chaos Solit. Fract., 20 (2004), 593-607.  doi: 10.1016/j.chaos.2003.08.010.  Google Scholar

[30]

R. Lima and M. Pettine, Suppression of chaos by resonant parametric perturbations, Phys. Rev. A, 41 (1990), 726-733.  doi: 10.1103/PhysRevA.41.726.  Google Scholar

[31] A. PikovskyM. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, 2001.  doi: 10.1017/CBO9780511755743.  Google Scholar
[32]

S. N. Rasband, Chaotic Dynamics of Nonlinear Systems, John Wiley, New York, 1990.  Google Scholar

[33]

E. S. RuslanF. Alexander and L. Daniel, Energy control of a pendulum with quantized feedback, Automatica, 67 (2016), 171-177.  doi: 10.1016/j.automatica.2016.01.019.  Google Scholar

[34]

M. Salerno, Suppression of phase-locking chaos in long Josephson junctions by biharmonic microwave fields, Phys. Rev. B, 44 (1991), 2720-2726.  doi: 10.1103/PhysRevB.44.2720.  Google Scholar

[35]

M. Salerno and M. R. Samuelsen, Stabilization of chaotic phase locked dynamics in long Josephson junctions, Phys. Lett. A, 190 (1994), 177-181.  doi: 10.1016/0375-9601(94)90073-6.  Google Scholar

[36]

R. Q. Wang and Z. J. Jing, Chaos control of chaotic pendulum system, Chaos, Solitons and Fractals, 21 (2004), 201-207.  doi: 10.1016/j.chaos.2003.10.011.  Google Scholar

[37]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, 1990. doi: 10.1007/978-1-4757-4067-7.  Google Scholar

[38]

K. Yagasaki and T. Uozumi, Controlling chaos in a pendulum subjected to feedforward and feedback control, Int. J. Bifurcation and Chaos, 7 (1997), 2827-2835.  doi: 10.1142/S0218127497001904.  Google Scholar

[39]

J. P. Yang and Z. J. Jing, Inhibition of chaos in a pendulum equation, Chaos, Solitons and Fractals, 35 (2008), 726-737.  doi: 10.1016/j.chaos.2006.05.065.  Google Scholar

[40]

J. P. Yang and Z. J. Jing, Control of chaos in a three-well duffing system, Chaos, Solitons and Fractals, 41 (2009), 1311-1328.  doi: 10.1016/j.chaos.2008.05.018.  Google Scholar

[41]

J. P. Yang and Z. J. Jing, Controlling in a pendulum equation with ultra-subharmonic resonances, Chaos, Solitons and Fractals, 42 (2009), 1214-1226.  doi: 10.1016/j.chaos.2009.03.035.  Google Scholar

Figure 1.  Phase portrait of system (2) for $ \alpha = 0.1 $.
Figure 2.  The chaotic attractor of system (1) for $ \alpha = 0.1, \; \omega = 1.5, \; \delta = 0.38, \; f_1 = 1.381 $, $ \gamma = 0.01 $ and $ f_0 = 0 $.
Figure 3.  The bifurcation diagram of system (1) in ($ \Psi $, x) plane for $ \alpha = 0.1 $, $ f_1 = 1.381 $, $ f_0 = 0.2 $, $ \delta = 0.38 $, $ \Omega = 0.75 $ and $ \omega = 1.5 $.
Figure 4.  The bifurcation diagram of system (1) in ($ \Psi $, x) plane for $ \alpha = 0.1 $, $ f_1 = 1.381 $, $ f_0 = 0.2 $, $ \delta = 0.38 $, $ \Omega = 0.5 $ and $ \omega = 1.5 $.
Figure 5.  The bifurcation diagram of system (1) in ($ \Psi $, x) plane for $ \alpha = 0.1 $, $ f_1 = 1.381 $, $ f_0 = 0.4 $, $ \delta = 0.38 $, $ \Omega = 1 $ and $ \omega = 1.5 $.
Figure 6.  The bifurcation diagram of system (1) in ($ \Psi $, x) plane for $ \alpha = 0.1 $, $ f_1 = 1.381 $, $ f_0 = 2 $, $ \delta = 0.38 $, $ \Omega = 0.75 $ and $ \omega = 1.5 $.
Figure 7.  The bifurcation diagram of system (1) in ($ \Psi $, x) plane for $ \alpha = 0.1 $, $ f_1 = 1.381 $, $ \delta = 0.38 $, $ \Omega = 0.5 $ and $ \omega = 1.5 $: (a) $ f_0 = 1 $; (b) $ f_0 = 4 $.
Figure 8.  The bifurcation diagram of system (1) in ($ \Psi $, x) plane for $ \alpha = 0.1 $, $ f_1 = 1.381 $, $ \delta = 0.38 $, $ \Omega = 1 $ and $ \omega = 1.5 $: (a) $ f_0 = 2 $; (b) $ f_0 = 2.5 $.
[1]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[2]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[3]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[4]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[5]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[6]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[7]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[8]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[9]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[10]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[11]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[12]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[13]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[14]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[15]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[16]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[17]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[18]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[19]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[20]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]