February  2021, 26(2): 861-873. doi: 10.3934/dcdsb.2020145

Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields

1. 

Department of Mathematics, Jinan University, Guangzhou 510632, P.R. China

2. 

School of Mathematics and Systems Science, Guangdong Polytechnic Normal University, Guangzhou 510665, P.R. China

* Corresponding author: Jianfeng Huang

Received  January 2019 Revised  January 2020 Published  May 2020

Fund Project: The first author is supported by the NSF of China (No.11401255, No.11771101) and the China Scholarship Council (No.201606785007). The second author is supported by the NSF of China (No.11771101), the major research program of colleges and universities in Guangdong Province (No.2017KZDXM054), and the Science and Technology Program of Guangzhou, China (201805010001)

In this paper we consider the limit cycles of the planar system
$ \begin{align*} \frac{d}{dt}(x,y) = \boldsymbol X_n+\boldsymbol X_m, \end{align*} $
where
$ \boldsymbol X_n $
and
$ \boldsymbol X_m $
are quasi-homogeneous vector fields of degree
$ n $
and
$ m $
respectively. We prove that under a new hypothesis, the maximal number of limit cycles of the system is
$ 1 $
. We also show that our result can be applied to some systems when the previous results are invalid. The proof is based on the investigations for the Abel equation and the generalized-polar equation associated with the system, respectively. Usually these two kinds of equations need to be dealt with separately, and for both equations, an efficient approach to estimate the number of periodic solutions is constructing suitable auxiliary functions. In the present paper we introduce a formula on the divergence, which allows us to construct an auxiliary function of one equation with the auxiliary function of the other equation, and vice versa.
Citation: Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145
References:
[1]

A. AlgabaE. FreireE. Gamero and C. García, Monodromy, center-focus and integrability problems for quasi-homogeneous polynomial systems, Nonlinear Anal., 72 (2010), 1726-1736.  doi: 10.1016/j.na.2009.09.012.  Google Scholar

[2]

A. AlgabaE. Gamero and C. García, The integrability problem for a class of planar systems, Nonlinearity, 22 (2009), 395-420.  doi: 10.1088/0951-7715/22/2/009.  Google Scholar

[3]

A. AlgabaC. García and M. Reyes, Integrability of two dimensional quasi-homogeneous polynomial differential systems, Rocky Mt. J. Math., 41 (2011), 1-22.  doi: 10.1216/RMJ-2011-41-1-1.  Google Scholar

[4]

M. J. ÁlvarezA. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations, J. Differential Equations, 234 (2007), 161-176.  doi: 10.1016/j.jde.2006.11.004.  Google Scholar

[5]

R. Benterki and J. Llibre, Limit cycles of polynomial differential equations with quintic homogeneous nonlinearities, J. Math. Anal. Appl., 407 (2013), 16-22.  doi: 10.1016/j.jmaa.2013.04.076.  Google Scholar

[6]

L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields (Ⅰ), Nonlinear Anal., 29 (1997), 783-811.  doi: 10.1016/S0362-546X(96)00088-0.  Google Scholar

[7]

L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields (Ⅱ), Nonlinear Anal., 39 (2000), 351-363.  doi: 10.1016/S0362-546X(98)00177-1.  Google Scholar

[8]

M. Carbonell and J. Llibre, Limit cycles of a class of polynomial systems, Proc. Royal Soc. Edinburgh, 109 (1988), 187-199.  doi: 10.1017/S0308210500026755.  Google Scholar

[9]

J. ChavarrigaI. A. Garcia and J. Gine, On integrability of differential equations defined by the sum of homogeneous vector fields with degenerate infinity, Int. J. Bifurcation Chaos, 11 (2011), 711-722.  doi: 10.1142/S0218127401002390.  Google Scholar

[10]

L. A. Čerkas, Number of limit cycles of an autonomous second-order system, Differ. Uravn., 12 (1976), 944-946.   Google Scholar

[11]

A. CimaA. Gasull and F. Mańosas, Limit cycles for vector fields with homogeneous components, Appl. Math., 24 (1997), 281-287.  doi: 10.4064/am-24-3-281-287.  Google Scholar

[12]

A. Cima and J. Llibre, Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. Math. Anal. Appl., 147 (1990), 420-448.  doi: 10.1016/0022-247X(90)90359-N.  Google Scholar

[13]

B. CollA. Gasull and R. Prohens, Differential equations defined by the sum of two quasi-homogeneous vector fields, Can. J. Math., 49 (1997), 212-231.  doi: 10.4153/CJM-1997-011-0.  Google Scholar

[14]

A. Gasull and J. Llibre, Limit cycles for a class of Abel equation, SIAM J. Math. Anal., 21 (1990), 1235-1244.  doi: 10.1137/0521068.  Google Scholar

[15]

A. GasullJ. Yu and X. Zhang, Vector fields with homogeneous nonlinearities and many limit cycles, J. Differential Equations, 258 (2015), 3286-3303.  doi: 10.1016/j.jde.2015.01.009.  Google Scholar

[16]

L. GavrilovJ. Giné and M. Grau, On the cyclicity of weight-homogeneous centers, J. Differential Equations, 246 (2009), 3126-3135.  doi: 10.1016/j.jde.2009.02.010.  Google Scholar

[17]

J. GinéM. Grau and J. Llibre, Limit cycles bifurcating from planar polynomial quasi-homogeneous centers, J. Differential Equations, 259 (2015), 7135-7160.  doi: 10.1016/j.jde.2015.08.014.  Google Scholar

[18]

J. Huang and H. Liang, A uniqueness criterion of limit cycles for planar polynomial systems with homogeneous nonlinearities, J. Math. Anal. Appl., 457 (2018), 498-521.  doi: 10.1016/j.jmaa.2017.08.008.  Google Scholar

[19]

J. HuangH. Liang and J. Llibre, Non-existence and uniqueness of limit cycles for planar polynomial differential systems with homogeneous nonlinearities, J. Differential Equations, 265 (2018), 3888-3913.  doi: 10.1016/j.jde.2018.05.019.  Google Scholar

[20]

J. Huang and Y. Zhao, Periodic solutions for equation $\dot{x}=A(t)x^m+B(t)x^n+C(t)x^l$ with $A(t)$ and $B(t)$ changing signs, J. Differential Equations, 253 (2012), 73-99.  doi: 10.1016/j.jde.2012.03.021.  Google Scholar

[21]

W. LiJ. LlibreJ. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homogeneous centers, J. Dynam. Differential Equations, 21 (2009), 133-152.  doi: 10.1007/s10884-008-9126-1.  Google Scholar

[22]

J. LlibreJesús S. Pérez del Río and J. A. Rodríguez, Structural stability of planar homogeneous polynomial vector fields: Applications to critical points and to infinity, J. Differential Equations, 125 (1996), 490-520.  doi: 10.1006/jdeq.1996.0038.  Google Scholar

[23]

J. LlibreJesús S. Pérez del Río and J. A. Rodríguez, Structural stability of planar semi-homogeneous polynomial vector fields: Applications to critical points and to infinity, Discrete Contin. Dyn. Syst., 6 (2000), 809-828.  doi: 10.3934/dcds.2000.6.809.  Google Scholar

[24]

J. Llibre and G. Świrszcz, On the limit cycles of polynomial vector fields, Dyn. Contin. Discrete Impuls. Syst, 18 (2011), 203-214.   Google Scholar

[25]

J. Llibre and C. Valls, Classification of the centers, their cyclicity and isochronicity for a class of polynomial differential systems generalizing the linear systems with cubic homogeneous nonlinearities, J. Differential Equations, 246 (2009), 2192-2204.  doi: 10.1016/j.jde.2008.12.006.  Google Scholar

[26]

N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems, J. London Math. Soc., 20 (1979), 277-286.  doi: 10.1112/jlms/s2-20.2.277.  Google Scholar

[27]

N. G. Lloyd and J. M. Pearson, Bifurcation of limit cycles and integrability of planar dynamical systems in complex form, J. Phys. A: Math. Gen., 32 (1999), 1973-1984.  doi: 10.1088/0305-4470/32/10/014.  Google Scholar

[28]

K. S. Sibirskii, On the number of limit cycles in the neighborhood of a singular point, Differential Equations, 1 (1965), 53-66.   Google Scholar

show all references

References:
[1]

A. AlgabaE. FreireE. Gamero and C. García, Monodromy, center-focus and integrability problems for quasi-homogeneous polynomial systems, Nonlinear Anal., 72 (2010), 1726-1736.  doi: 10.1016/j.na.2009.09.012.  Google Scholar

[2]

A. AlgabaE. Gamero and C. García, The integrability problem for a class of planar systems, Nonlinearity, 22 (2009), 395-420.  doi: 10.1088/0951-7715/22/2/009.  Google Scholar

[3]

A. AlgabaC. García and M. Reyes, Integrability of two dimensional quasi-homogeneous polynomial differential systems, Rocky Mt. J. Math., 41 (2011), 1-22.  doi: 10.1216/RMJ-2011-41-1-1.  Google Scholar

[4]

M. J. ÁlvarezA. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations, J. Differential Equations, 234 (2007), 161-176.  doi: 10.1016/j.jde.2006.11.004.  Google Scholar

[5]

R. Benterki and J. Llibre, Limit cycles of polynomial differential equations with quintic homogeneous nonlinearities, J. Math. Anal. Appl., 407 (2013), 16-22.  doi: 10.1016/j.jmaa.2013.04.076.  Google Scholar

[6]

L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields (Ⅰ), Nonlinear Anal., 29 (1997), 783-811.  doi: 10.1016/S0362-546X(96)00088-0.  Google Scholar

[7]

L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields (Ⅱ), Nonlinear Anal., 39 (2000), 351-363.  doi: 10.1016/S0362-546X(98)00177-1.  Google Scholar

[8]

M. Carbonell and J. Llibre, Limit cycles of a class of polynomial systems, Proc. Royal Soc. Edinburgh, 109 (1988), 187-199.  doi: 10.1017/S0308210500026755.  Google Scholar

[9]

J. ChavarrigaI. A. Garcia and J. Gine, On integrability of differential equations defined by the sum of homogeneous vector fields with degenerate infinity, Int. J. Bifurcation Chaos, 11 (2011), 711-722.  doi: 10.1142/S0218127401002390.  Google Scholar

[10]

L. A. Čerkas, Number of limit cycles of an autonomous second-order system, Differ. Uravn., 12 (1976), 944-946.   Google Scholar

[11]

A. CimaA. Gasull and F. Mańosas, Limit cycles for vector fields with homogeneous components, Appl. Math., 24 (1997), 281-287.  doi: 10.4064/am-24-3-281-287.  Google Scholar

[12]

A. Cima and J. Llibre, Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. Math. Anal. Appl., 147 (1990), 420-448.  doi: 10.1016/0022-247X(90)90359-N.  Google Scholar

[13]

B. CollA. Gasull and R. Prohens, Differential equations defined by the sum of two quasi-homogeneous vector fields, Can. J. Math., 49 (1997), 212-231.  doi: 10.4153/CJM-1997-011-0.  Google Scholar

[14]

A. Gasull and J. Llibre, Limit cycles for a class of Abel equation, SIAM J. Math. Anal., 21 (1990), 1235-1244.  doi: 10.1137/0521068.  Google Scholar

[15]

A. GasullJ. Yu and X. Zhang, Vector fields with homogeneous nonlinearities and many limit cycles, J. Differential Equations, 258 (2015), 3286-3303.  doi: 10.1016/j.jde.2015.01.009.  Google Scholar

[16]

L. GavrilovJ. Giné and M. Grau, On the cyclicity of weight-homogeneous centers, J. Differential Equations, 246 (2009), 3126-3135.  doi: 10.1016/j.jde.2009.02.010.  Google Scholar

[17]

J. GinéM. Grau and J. Llibre, Limit cycles bifurcating from planar polynomial quasi-homogeneous centers, J. Differential Equations, 259 (2015), 7135-7160.  doi: 10.1016/j.jde.2015.08.014.  Google Scholar

[18]

J. Huang and H. Liang, A uniqueness criterion of limit cycles for planar polynomial systems with homogeneous nonlinearities, J. Math. Anal. Appl., 457 (2018), 498-521.  doi: 10.1016/j.jmaa.2017.08.008.  Google Scholar

[19]

J. HuangH. Liang and J. Llibre, Non-existence and uniqueness of limit cycles for planar polynomial differential systems with homogeneous nonlinearities, J. Differential Equations, 265 (2018), 3888-3913.  doi: 10.1016/j.jde.2018.05.019.  Google Scholar

[20]

J. Huang and Y. Zhao, Periodic solutions for equation $\dot{x}=A(t)x^m+B(t)x^n+C(t)x^l$ with $A(t)$ and $B(t)$ changing signs, J. Differential Equations, 253 (2012), 73-99.  doi: 10.1016/j.jde.2012.03.021.  Google Scholar

[21]

W. LiJ. LlibreJ. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homogeneous centers, J. Dynam. Differential Equations, 21 (2009), 133-152.  doi: 10.1007/s10884-008-9126-1.  Google Scholar

[22]

J. LlibreJesús S. Pérez del Río and J. A. Rodríguez, Structural stability of planar homogeneous polynomial vector fields: Applications to critical points and to infinity, J. Differential Equations, 125 (1996), 490-520.  doi: 10.1006/jdeq.1996.0038.  Google Scholar

[23]

J. LlibreJesús S. Pérez del Río and J. A. Rodríguez, Structural stability of planar semi-homogeneous polynomial vector fields: Applications to critical points and to infinity, Discrete Contin. Dyn. Syst., 6 (2000), 809-828.  doi: 10.3934/dcds.2000.6.809.  Google Scholar

[24]

J. Llibre and G. Świrszcz, On the limit cycles of polynomial vector fields, Dyn. Contin. Discrete Impuls. Syst, 18 (2011), 203-214.   Google Scholar

[25]

J. Llibre and C. Valls, Classification of the centers, their cyclicity and isochronicity for a class of polynomial differential systems generalizing the linear systems with cubic homogeneous nonlinearities, J. Differential Equations, 246 (2009), 2192-2204.  doi: 10.1016/j.jde.2008.12.006.  Google Scholar

[26]

N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems, J. London Math. Soc., 20 (1979), 277-286.  doi: 10.1112/jlms/s2-20.2.277.  Google Scholar

[27]

N. G. Lloyd and J. M. Pearson, Bifurcation of limit cycles and integrability of planar dynamical systems in complex form, J. Phys. A: Math. Gen., 32 (1999), 1973-1984.  doi: 10.1088/0305-4470/32/10/014.  Google Scholar

[28]

K. S. Sibirskii, On the number of limit cycles in the neighborhood of a singular point, Differential Equations, 1 (1965), 53-66.   Google Scholar

Figure 1.  The dot curve represents the curve $ b_n(\theta)+b_m(\theta)r = 0 $ in Cartesian coordinates, which is the inner boundary of the region $ U $
[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[3]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[4]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[5]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[6]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[7]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[8]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[9]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[10]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[11]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[12]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[13]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452

[14]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[15]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[16]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[17]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[18]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[19]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[20]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (75)
  • HTML views (303)
  • Cited by (0)

Other articles
by authors

[Back to Top]