• Previous Article
    Random attractors for 2D stochastic micropolar fluid flows on unbounded domains
  • DCDS-B Home
  • This Issue
  • Next Article
    On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies
doi: 10.3934/dcdsb.2020146

On the rigid-lid approximation of shallow water Bingham

1. 

Sorbonne University, Laboratory of Jacques-Louis Lions, 4 Place Jussieu 75005, Paris, France, INRIA Paris, ANGE Team, 2 Rue Simone IFF, 75012 Paris, France

2. 

Savoie Mont Blanc University, LAMA UMR5127 CNRS, 73376 Le Bourget du Lac, France, Lebanese University, Faculty of sciences 1, Laboratory of Mathematics-EDST, Hadath, Lebanon

* Corresponding author: Bilal Al Taki

Received  April 2019 Revised  January 2020 Published  May 2020

This paper discusses the well posedness of an initial value problem describing the motion of a Bingham fluid in a basin with a degenerate bottom topography. A physical interpretation of such motion is discussed. The system governing such motion is obtained from the Shallow Water-Bingham models in the regime where the Froude number degenerates, i.e taking the limit of such equations as the Froude number tends to zero. Since we are considering equations with degenerate coefficients, then we shall work with weighted Sobolev spaces in order to establish the existence of a weak solution. In order to overcome the difficulty of the discontinuity in Bingham's constitutive law, we follow a similar approach to that introduced in [G. DUVAUT and J.-L. LIONS, Springer-Verlag, 1976]. We study also the behavior of this solution when the yield limit vanishes. Finally, a numerical scheme for the system in 1D is furnished.

Citation: Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020146
References:
[1]

N. Aïssiouene, M.-O. Bristeau, E. Godlewski, A. Mangeney, C. Parés and J. Sainte-Marie, A Two-dimensional Method for a Dispersive Shallow Water Model, https://hal.archives-ouvertes.fr/hal-01632522, Working paper or preprint, 2017. Google Scholar

[2]

B. Al Taki, Viscosity effect on the degenerate lake equations, Nonlinear Anal., 148 (2017), 30-60.  doi: 10.1016/j.na.2016.09.017.  Google Scholar

[3]

E. Bingham, Fluidity and Plasticity, McGraw-Hill, 1922. Google Scholar

[4]

F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-balanced Schemes for Sources, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2004. doi: 10.1007/b93802.  Google Scholar

[5]

C. Bourdarias and S. Gerbi, A finite volume scheme for a model coupling free surface and pressurised flows in pipes, J. Comput. Appl. Math., 209 (2007), 109-131.  doi: 10.1016/j.cam.2006.10.086.  Google Scholar

[6]

C. BourdariasS. Gerbi and M. Gisclon, A kinetic formulation for a model coupling free surface and pressurised flows in closed pipes, J. Comput. Appl. Math., 218 (2008), 522-531.  doi: 10.1016/j.cam.2007.09.009.  Google Scholar

[7]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, vol. 183 of Applied Mathematical Sciences, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[8]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.  doi: 10.1007/s00220-003-0859-8.  Google Scholar

[9]

D. Bresch, E. D. Fernández-Nieto, I. R. Ionescu and P. Vigneaux, Augmented Lagrangian method and compressible visco-plastic flows: Applications to shallow dense avalanches, in New Directions in Mathematical Fluid Mechanics, Adv. Math. Fluid Mech., Birkhäuser Verlag, Basel, (2010), 57–89.  Google Scholar

[10]

M. BulíčekP. GwiazdaJ. Málek and A. Świerczewska Gwiazda, On unsteady flows of implicitly constituted incompressible fluids, SIAM J. Math. Anal., 44 (2012), 2756-2801.  doi: 10.1137/110830289.  Google Scholar

[11]

A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp., 22 (1968), 745-762.  doi: 10.1090/S0025-5718-1968-0242392-2.  Google Scholar

[12]

G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Grundlehren der Mathematischen Wissenschaften, 219. Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[13]

D. E. Edmunds and R. Hurri-Syrjänen, Weighted Hardy inequalities, J. Math. Anal. Appl., 310 (2005), 424-435.  doi: 10.1016/j.jmaa.2005.01.066.  Google Scholar

[14]

R. Farwig and H. Sohr, Weighted $L^q$-theory for the Stokes resolvent in exterior domains, J. Math. Soc. Japan, 49 (1997), 251-288.  doi: 10.2969/jmsj/04920251.  Google Scholar

[15]

E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Advances in Mathematical Fluid Mechanics, Birkhäuser/Springer, Cham, 2017, Second edition of [MR2499296].  Google Scholar

[16]

E. Fernández-NietoP. Noble and J. Vila, Shallow water equations for power law and Bingham fluids, Sci. China Math., 55 (2012), 277-283.  doi: 10.1007/s11425-011-4358-7.  Google Scholar

[17]

A. Fröhlich, The Stokes operator in weighted $L^q$-spaces. Ⅱ. Weighted resolvent estimates and maximal $L^p$-regularity, Math. Ann., 339 (2007), 287-316.  doi: 10.1007/s00208-007-0114-2.  Google Scholar

[18]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover Publications, Inc., Mineola, NY, 2006, Unabridged republication of the 1993 original.  Google Scholar

[19]

A. Kał amajska, Coercive inequalities on weighted Sobolev spaces, Colloq. Math., 66 (1994), 309-318.   Google Scholar

[20]

C. D. Levermore and M. Sammartino, A shallow water model with eddy viscosity for basins with varying bottom topography, Nonlinearity, 14 (2001), 1493-1515.  doi: 10.1088/0951-7715/14/6/305.  Google Scholar

[21]

J.-L. Lions, Remarks on some nonlinear evolution problems arising in Bingham flows, Israel J. Math., 13 (1972), 155–172 (1973).  Google Scholar

[22] P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2, vol. 10 of Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press, Oxford University Press, New York, 1998.   Google Scholar
[23]

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226, URL https://doi-org.camphrier-1.grenet.fr/10.2307/1995882. doi: 10.1090/S0002-9947-1972-0293384-6.  Google Scholar

[24]

M. Naaim and A. Bouchet, Etude Expérimentale des Écoulements D'avalanches de Neige Dense, Mesures et interprétations des profils de vitesse en écoulements quasi permanents et pleinement développés. Rapport scientifique. UR ETNA, Grenoble. Google Scholar

[25]

A. Nekvinda, Characterization of traces of the weighted Sobolev space $W^{1, p}(\Omega, d^\epsilon_M)$ on $M$, Czechoslovak Math. J., 43 (1993), 695-711.   Google Scholar

[26]

K. Nishimura and N. Maeno, Contribution of viscous forces to avalanche dynamics, Annals of Glaciology, 13 (1989), 202-206.   Google Scholar

[27]

R. PerlaT. Cheng and D. McClung, A two–parameter model of snow–avalanche motion, Ann. Glaciol., 26 (1980), 197-207.   Google Scholar

[28]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2. North-Holland Publishing Co., Amsterdam-New York, 1979.  Google Scholar

[29]

B. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, vol. 1736 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2000. URL https://doi-org.camphrier-1.grenet.fr/10.1007/BFb0103908. Google Scholar

[30]

A. Vasseur and C. Yu, Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations, Invent. Math., 206 (2016), 935-974.  doi: 10.1007/s00222-016-0666-4.  Google Scholar

show all references

References:
[1]

N. Aïssiouene, M.-O. Bristeau, E. Godlewski, A. Mangeney, C. Parés and J. Sainte-Marie, A Two-dimensional Method for a Dispersive Shallow Water Model, https://hal.archives-ouvertes.fr/hal-01632522, Working paper or preprint, 2017. Google Scholar

[2]

B. Al Taki, Viscosity effect on the degenerate lake equations, Nonlinear Anal., 148 (2017), 30-60.  doi: 10.1016/j.na.2016.09.017.  Google Scholar

[3]

E. Bingham, Fluidity and Plasticity, McGraw-Hill, 1922. Google Scholar

[4]

F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-balanced Schemes for Sources, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2004. doi: 10.1007/b93802.  Google Scholar

[5]

C. Bourdarias and S. Gerbi, A finite volume scheme for a model coupling free surface and pressurised flows in pipes, J. Comput. Appl. Math., 209 (2007), 109-131.  doi: 10.1016/j.cam.2006.10.086.  Google Scholar

[6]

C. BourdariasS. Gerbi and M. Gisclon, A kinetic formulation for a model coupling free surface and pressurised flows in closed pipes, J. Comput. Appl. Math., 218 (2008), 522-531.  doi: 10.1016/j.cam.2007.09.009.  Google Scholar

[7]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, vol. 183 of Applied Mathematical Sciences, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[8]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.  doi: 10.1007/s00220-003-0859-8.  Google Scholar

[9]

D. Bresch, E. D. Fernández-Nieto, I. R. Ionescu and P. Vigneaux, Augmented Lagrangian method and compressible visco-plastic flows: Applications to shallow dense avalanches, in New Directions in Mathematical Fluid Mechanics, Adv. Math. Fluid Mech., Birkhäuser Verlag, Basel, (2010), 57–89.  Google Scholar

[10]

M. BulíčekP. GwiazdaJ. Málek and A. Świerczewska Gwiazda, On unsteady flows of implicitly constituted incompressible fluids, SIAM J. Math. Anal., 44 (2012), 2756-2801.  doi: 10.1137/110830289.  Google Scholar

[11]

A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp., 22 (1968), 745-762.  doi: 10.1090/S0025-5718-1968-0242392-2.  Google Scholar

[12]

G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Grundlehren der Mathematischen Wissenschaften, 219. Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[13]

D. E. Edmunds and R. Hurri-Syrjänen, Weighted Hardy inequalities, J. Math. Anal. Appl., 310 (2005), 424-435.  doi: 10.1016/j.jmaa.2005.01.066.  Google Scholar

[14]

R. Farwig and H. Sohr, Weighted $L^q$-theory for the Stokes resolvent in exterior domains, J. Math. Soc. Japan, 49 (1997), 251-288.  doi: 10.2969/jmsj/04920251.  Google Scholar

[15]

E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Advances in Mathematical Fluid Mechanics, Birkhäuser/Springer, Cham, 2017, Second edition of [MR2499296].  Google Scholar

[16]

E. Fernández-NietoP. Noble and J. Vila, Shallow water equations for power law and Bingham fluids, Sci. China Math., 55 (2012), 277-283.  doi: 10.1007/s11425-011-4358-7.  Google Scholar

[17]

A. Fröhlich, The Stokes operator in weighted $L^q$-spaces. Ⅱ. Weighted resolvent estimates and maximal $L^p$-regularity, Math. Ann., 339 (2007), 287-316.  doi: 10.1007/s00208-007-0114-2.  Google Scholar

[18]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover Publications, Inc., Mineola, NY, 2006, Unabridged republication of the 1993 original.  Google Scholar

[19]

A. Kał amajska, Coercive inequalities on weighted Sobolev spaces, Colloq. Math., 66 (1994), 309-318.   Google Scholar

[20]

C. D. Levermore and M. Sammartino, A shallow water model with eddy viscosity for basins with varying bottom topography, Nonlinearity, 14 (2001), 1493-1515.  doi: 10.1088/0951-7715/14/6/305.  Google Scholar

[21]

J.-L. Lions, Remarks on some nonlinear evolution problems arising in Bingham flows, Israel J. Math., 13 (1972), 155–172 (1973).  Google Scholar

[22] P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2, vol. 10 of Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press, Oxford University Press, New York, 1998.   Google Scholar
[23]

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226, URL https://doi-org.camphrier-1.grenet.fr/10.2307/1995882. doi: 10.1090/S0002-9947-1972-0293384-6.  Google Scholar

[24]

M. Naaim and A. Bouchet, Etude Expérimentale des Écoulements D'avalanches de Neige Dense, Mesures et interprétations des profils de vitesse en écoulements quasi permanents et pleinement développés. Rapport scientifique. UR ETNA, Grenoble. Google Scholar

[25]

A. Nekvinda, Characterization of traces of the weighted Sobolev space $W^{1, p}(\Omega, d^\epsilon_M)$ on $M$, Czechoslovak Math. J., 43 (1993), 695-711.   Google Scholar

[26]

K. Nishimura and N. Maeno, Contribution of viscous forces to avalanche dynamics, Annals of Glaciology, 13 (1989), 202-206.   Google Scholar

[27]

R. PerlaT. Cheng and D. McClung, A two–parameter model of snow–avalanche motion, Ann. Glaciol., 26 (1980), 197-207.   Google Scholar

[28]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2. North-Holland Publishing Co., Amsterdam-New York, 1979.  Google Scholar

[29]

B. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, vol. 1736 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2000. URL https://doi-org.camphrier-1.grenet.fr/10.1007/BFb0103908. Google Scholar

[30]

A. Vasseur and C. Yu, Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations, Invent. Math., 206 (2016), 935-974.  doi: 10.1007/s00222-016-0666-4.  Google Scholar

Figure 1.  Chosen profile for $ b(x) $
Figure 2.  (a) variations of the velocity $ u $ and (b) variations of the pressure $ p $ in the fluid domain at time $ t = T/2 $
Figure 3.  (a) variations of the quantity $ \tilde\sigma $ and (b) variations of $ \,\partial_x u $ at time $ t = T/2 $
[1]

Stefano Scrobogna. Global existence and convergence of nondimensionalized incompressible Navier-Stokes equations in low Froude number regime. Discrete & Continuous Dynamical Systems - A, 2020, 40 (9) : 5471-5511. doi: 10.3934/dcds.2020235

[2]

Eduard Feireisl, Hana Petzeltová. Low Mach number asymptotics for reacting compressible fluid flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 455-480. doi: 10.3934/dcds.2010.26.455

[3]

Giulio G. Giusteri, Alfredo Marzocchi, Alessandro Musesti. Steady free fall of one-dimensional bodies in a hyperviscous fluid at low Reynolds number. Evolution Equations & Control Theory, 2014, 3 (3) : 429-445. doi: 10.3934/eect.2014.3.429

[4]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[5]

Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437

[6]

Qixuan Wang, Hans G. Othmer. The performance of discrete models of low reynolds number swimmers. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1303-1320. doi: 10.3934/mbe.2015.12.1303

[7]

Donatella Donatelli, Bernard Ducomet, Šárka Nečasová. Low Mach number limit for a model of accretion disk. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3239-3268. doi: 10.3934/dcds.2018141

[8]

Prosenjit Roy. On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5207-5222. doi: 10.3934/dcds.2019212

[9]

S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155

[10]

Junkee Jeon, Jehan Oh. Valuation of American strangle option: Variational inequality approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 755-781. doi: 10.3934/dcdsb.2018206

[11]

Zijia Peng, Cuiming Ma, Zhonghui Liu. Existence for a quasistatic variational-hemivariational inequality. Evolution Equations & Control Theory, 2020, 9 (4) : 1153-1165. doi: 10.3934/eect.2020058

[12]

Jishan Fan, Fucai Li, Gen Nakamura. Low Mach number limit of the full compressible Hall-MHD system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1731-1740. doi: 10.3934/cpaa.2017084

[13]

Fucai Li, Yanmin Mu. Low Mach number limit for the compressible magnetohydrodynamic equations in a periodic domain. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1669-1705. doi: 10.3934/dcds.2018069

[14]

Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545

[15]

Masao Fukushima. A class of gap functions for quasi-variational inequality problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 165-171. doi: 10.3934/jimo.2007.3.165

[16]

Wenyan Zhang, Shu Xu, Shengji Li, Xuexiang Huang. Generalized weak sharp minima of variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2013, 9 (3) : 621-630. doi: 10.3934/jimo.2013.9.621

[17]

Li Wang, Yang Li, Liwei Zhang. A differential equation method for solving box constrained variational inequality problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 183-198. doi: 10.3934/jimo.2011.7.183

[18]

T. A. Shaposhnikova, M. N. Zubova. Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks & Heterogeneous Media, 2008, 3 (3) : 675-689. doi: 10.3934/nhm.2008.3.675

[19]

Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545

[20]

Junfeng Yang. Dynamic power price problem: An inverse variational inequality approach. Journal of Industrial & Management Optimization, 2008, 4 (4) : 673-684. doi: 10.3934/jimo.2008.4.673

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (29)
  • HTML views (219)
  • Cited by (0)

[Back to Top]