• Previous Article
    Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures
  • DCDS-B Home
  • This Issue
  • Next Article
    Wolbachia infection dynamics in mosquito population with the CI effect suffering by uninfected ova produced by infected females
doi: 10.3934/dcdsb.2020149

Asymmetric diffusion in a two-patch mutualism system characterizing exchange of resource for resource

School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China

Received  May 2019 Revised  February 2020 Published  May 2020

Fund Project: The author is supported by NSF of P.R. China (11571382)

This paper considers a two-patch mutualism system derived from exchange of resource for resource, where the obligate mutualist can diffuse asymmetrically between patches. First, we give a complete analysis on dynamics of the system without diffusion, which exhibit how resource production of the obligate mutualist leads to its survival/extinction. Using monotone dynamics theory, we show global stability of a positive equilibrium in the three-dimensional system with diffusion. A novel finding of this work is that the obligate species' final abundance is explicitly expressed as a function of the diffusion rate and asymmetry, which demonstrates precise mechanisms by which the diffusion and asymmetry lead to the abundance higher than if non-diffusing, even though the facultative species declines. It is shown that for a fixed diffusion rate, intermediate asymmetry is favorable while extremely large asymmetry is unfavorable; For a fixed asymmetry, small diffusion is favorable while extremely large asymmetry is unfavorable. Initial densities of the species are also shown to be important in species' persistence and abundance. Numerical simulations confirm and extend our results.

Citation: Yuanshi Wang. Asymmetric diffusion in a two-patch mutualism system characterizing exchange of resource for resource. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020149
References:
[1]

R. ArditiC. Lobry and T. Sari, Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation, Theor. Popul. Biol., 106 (2015), 45-59.  doi: 10.1016/j.tpb.2015.10.001.  Google Scholar

[2]

R. ArditiC. Lobry and T. Sari, Asymmetric dispersal in the multi-patch logistic equation, Theor. Popul. Biol., 120 (2018), 11-15.  doi: 10.1016/j.tpb.2017.12.006.  Google Scholar

[3]

J. $\hat{A}$str$\ddot{o}$m and T. P$\ddot{a}$rt, Negative and matrix-dependent effects of dispersal corri- dors in an experimental metacommunity, Ecology, 94 (2013), 1939-1970.   Google Scholar

[4]

C. J. Briggs and M. F. Hoopes, Stabilizing effects in spatial parasitoid-host and predator-prey models: A review, Theor. Popul. Biol., 65 (2004), 299-315.  doi: 10.1016/j.tpb.2003.11.001.  Google Scholar

[5]

G. J. ButlerH. I. Freedman and P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Sco., 96 (1986), 425-430.  doi: 10.1090/S0002-9939-1986-0822433-4.  Google Scholar

[6]

L. Fahrig, Effect of habitat fragmentation on the extinction threshold: A synthesis, Ecol. Appl., 12 (2002), 346-353.   Google Scholar

[7]

H. I. Freedman and D. Waltman, Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator, SIAM J Appl Math., 32 (1977), 631-648.  doi: 10.1137/0132052.  Google Scholar

[8] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, UK, 1998.  doi: 10.1017/CBO9781139173179.  Google Scholar
[9]

R. D. Holt, Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution, Theor. Popul. Biol., 28 (1985), 181-208.  doi: 10.1016/0040-5809(85)90027-9.  Google Scholar

[10]

J. N. Holland and D. L. DeAngelis, A consumer-resource approach to the density-dependent population dynamics of mutualism, Ecology, 91 (2010), 1286-1295.   Google Scholar

[11]

V. HutsonY. Lou and K. Mischaikow, Convergence in competition models with small diffusion coefficients, J. Diff. Equa., 211 (2005), 135-161.  doi: 10.1016/j.jde.2004.06.003.  Google Scholar

[12]

V. A. A. Jansen, The dynamics of two diffusively coupled predator-prey populations, Theor. Popul. Biol., 59 (2001), 119-131.  doi: 10.1006/tpbi.2000.1506.  Google Scholar

[13]

J. Jiang, Three- and four-dimensional cooperative systems with every equilibrium stable, J. Math. Anal. Appl., 188 (1994), 92-100.  doi: 10.1006/jmaa.1994.1413.  Google Scholar

[14]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Diff. Equa., 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[15]

T. A. Revilla, Numerical responses in resource-based mutualisms: A time scale approach, J. Theor. Biol., 378 (2015), 39-46.  doi: 10.1016/j.jtbi.2015.04.012.  Google Scholar

[16]

S. Rinaldi and M. Scheffer, Geometric analysis of ecological models with slow and fast processes, Ecosystems, 3 (2000), 507-521.  doi: 10.1007/s100210000045.  Google Scholar

[17]

A. Ruiz-Herrera and P. J. Torres, Effects of diffusion on total biomass in simple metacommunities, J. Theor. Biol., 447 (2018), 12-24.  doi: 10.1016/j.jtbi.2018.03.018.  Google Scholar

[18] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soci. Press, New York, USA, 1995.   Google Scholar
[19] H. L. Smith and P. Waltman, The Theory of the Chemostat, New York: Cambridge University Press, 1995.  doi: 10.1017/CBO9780511530043.  Google Scholar
[20]

G. Takimoto and K. Suzuki, Global stability of obligate mutualism in community modules with facultative mutualists, OIKOS, 125 (2015), 535-540.  doi: 10.1111/oik.02741.  Google Scholar

[21]

J. J. Tewksbury et al., Corridors affect plants, animals, and their interactions in fragmented landscapes, Proc. Natl. Acad. Sci. U.S.A., 99 (2002), 12923-12926. Google Scholar

[22]

Y. Wang and D. L. DeAngelis, Comparison of effects of diffusion in heterogeneous and homogeneous with the same total carrying capacity on total realized population size, Theor. Popul. Biol., 125 (2019), 30-37.   Google Scholar

[23]

Y. WangH. Wu and D. L. DeAngelis, Global dynamics of a mutualism-competition model with one resource and multiple consumers, J. Math. Biol., 78 (2019), 683-710.  doi: 10.1007/s00285-018-1288-9.  Google Scholar

[24]

B. ZhangK. AlexM. L. KeenanZ. LuL. R. ArrixW.-M. NiD. L. DeAngelis and J. D. Dyken, Carrying capacity in a heterogeneous environment with habitat connectivity, Ecology Letters, 20 (2017), 1118-1128.  doi: 10.1111/ele.12807.  Google Scholar

show all references

References:
[1]

R. ArditiC. Lobry and T. Sari, Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation, Theor. Popul. Biol., 106 (2015), 45-59.  doi: 10.1016/j.tpb.2015.10.001.  Google Scholar

[2]

R. ArditiC. Lobry and T. Sari, Asymmetric dispersal in the multi-patch logistic equation, Theor. Popul. Biol., 120 (2018), 11-15.  doi: 10.1016/j.tpb.2017.12.006.  Google Scholar

[3]

J. $\hat{A}$str$\ddot{o}$m and T. P$\ddot{a}$rt, Negative and matrix-dependent effects of dispersal corri- dors in an experimental metacommunity, Ecology, 94 (2013), 1939-1970.   Google Scholar

[4]

C. J. Briggs and M. F. Hoopes, Stabilizing effects in spatial parasitoid-host and predator-prey models: A review, Theor. Popul. Biol., 65 (2004), 299-315.  doi: 10.1016/j.tpb.2003.11.001.  Google Scholar

[5]

G. J. ButlerH. I. Freedman and P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Sco., 96 (1986), 425-430.  doi: 10.1090/S0002-9939-1986-0822433-4.  Google Scholar

[6]

L. Fahrig, Effect of habitat fragmentation on the extinction threshold: A synthesis, Ecol. Appl., 12 (2002), 346-353.   Google Scholar

[7]

H. I. Freedman and D. Waltman, Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator, SIAM J Appl Math., 32 (1977), 631-648.  doi: 10.1137/0132052.  Google Scholar

[8] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, UK, 1998.  doi: 10.1017/CBO9781139173179.  Google Scholar
[9]

R. D. Holt, Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution, Theor. Popul. Biol., 28 (1985), 181-208.  doi: 10.1016/0040-5809(85)90027-9.  Google Scholar

[10]

J. N. Holland and D. L. DeAngelis, A consumer-resource approach to the density-dependent population dynamics of mutualism, Ecology, 91 (2010), 1286-1295.   Google Scholar

[11]

V. HutsonY. Lou and K. Mischaikow, Convergence in competition models with small diffusion coefficients, J. Diff. Equa., 211 (2005), 135-161.  doi: 10.1016/j.jde.2004.06.003.  Google Scholar

[12]

V. A. A. Jansen, The dynamics of two diffusively coupled predator-prey populations, Theor. Popul. Biol., 59 (2001), 119-131.  doi: 10.1006/tpbi.2000.1506.  Google Scholar

[13]

J. Jiang, Three- and four-dimensional cooperative systems with every equilibrium stable, J. Math. Anal. Appl., 188 (1994), 92-100.  doi: 10.1006/jmaa.1994.1413.  Google Scholar

[14]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Diff. Equa., 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[15]

T. A. Revilla, Numerical responses in resource-based mutualisms: A time scale approach, J. Theor. Biol., 378 (2015), 39-46.  doi: 10.1016/j.jtbi.2015.04.012.  Google Scholar

[16]

S. Rinaldi and M. Scheffer, Geometric analysis of ecological models with slow and fast processes, Ecosystems, 3 (2000), 507-521.  doi: 10.1007/s100210000045.  Google Scholar

[17]

A. Ruiz-Herrera and P. J. Torres, Effects of diffusion on total biomass in simple metacommunities, J. Theor. Biol., 447 (2018), 12-24.  doi: 10.1016/j.jtbi.2018.03.018.  Google Scholar

[18] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soci. Press, New York, USA, 1995.   Google Scholar
[19] H. L. Smith and P. Waltman, The Theory of the Chemostat, New York: Cambridge University Press, 1995.  doi: 10.1017/CBO9780511530043.  Google Scholar
[20]

G. Takimoto and K. Suzuki, Global stability of obligate mutualism in community modules with facultative mutualists, OIKOS, 125 (2015), 535-540.  doi: 10.1111/oik.02741.  Google Scholar

[21]

J. J. Tewksbury et al., Corridors affect plants, animals, and their interactions in fragmented landscapes, Proc. Natl. Acad. Sci. U.S.A., 99 (2002), 12923-12926. Google Scholar

[22]

Y. Wang and D. L. DeAngelis, Comparison of effects of diffusion in heterogeneous and homogeneous with the same total carrying capacity on total realized population size, Theor. Popul. Biol., 125 (2019), 30-37.   Google Scholar

[23]

Y. WangH. Wu and D. L. DeAngelis, Global dynamics of a mutualism-competition model with one resource and multiple consumers, J. Math. Biol., 78 (2019), 683-710.  doi: 10.1007/s00285-018-1288-9.  Google Scholar

[24]

B. ZhangK. AlexM. L. KeenanZ. LuL. R. ArrixW.-M. NiD. L. DeAngelis and J. D. Dyken, Carrying capacity in a heterogeneous environment with habitat connectivity, Ecology Letters, 20 (2017), 1118-1128.  doi: 10.1111/ele.12807.  Google Scholar

Figure 1.  Phase-plane diagram of system (5). Stable and unstable equilibria are identified by solid and open circles, respectively. Vector fields are shown by green arrows. Isoclines of species $ u,v_1 $ are represented by red and blue lines, respectively. Fix $ r = r_1 = c = 1 $. (a) Let $ a_{12} = 2.5, a_{21} = 1.3 $. Equilibrium $ E^+(2.7,2.5) $ is globally asymptotically stable. (b) Let $ a_{12} = 4.5, a_{21} = 0.9 $. There are two positive equilibria $ E^-(1.25,0.14) $ and $ E^+(2.79,1.5) $. (c) Let $ a_{12} = 3.5, a_{21} = 0.9 $. The equilibria $ E^- $ and $ E^+ $ coincide and form a saddle-node point $ E^\pm(1.6,0.45) $. In the cases of (b-c), the separatrices (the black line) of $ E^- $ subdivide the first quadrant into two regions: one is the basin of attraction of $ E_1 $ while the other is that of $ E^+ $. (d) Let $ a_{12} = 2.5, a_{21} = 0.5 $. All positive solutions converge to equilibrium $ E_1(1,0) $
Figure 4.  Comparison of $ T_1(s, 0) $ and $ T_2(s, D) $ when there is diffusion $ D $ as shown in Theorem 4.1(ⅰ). The solid blue line represents $ T_2(s, D) $, while the dash-dot red line represents $ T_1(s, 0) $. Let $ r = 0.2, c = 0.05, a_{12} = 0.1, b = b_1 = 1, s = 1 $, $ a_{21} = 0.5, r_1 = 0.8, r_2 = 0.1 $. (a) When $ s = 1 $, we have $ T_2>T_1 $ for $ D>0 $. (b) When $ s = 10 $, we have $ T_2>T_1 $ as $ 0<D< 0.0135 $ while $ T_2<T_1 $ as $ D> 0.0135 $
Figure 5.  Comparison of $ T_1(s, 0) $ and $ T_2(s,100) $ when there is asymmetry $ s $ in large diffusion as shown in Theorem 4.2(ⅰ). The solid blue line represents $ T_2(s,100) $, while the dash-dot red line represents $ T_1(s, 0) $. Let $ r = 0.2, c = 0.05, a_{12} = 0.1, b = b_1 = 1, D = 100 $, $ a_{21} = 0.5, r_1 = 0.8, r_2 = 0.1 $. Then we have $ T_1(s, 0) = 1.9233 $ and $ T_2(s,100)>T_1(s, 0) $ as $ 0.1935< s< 9.3201 $. Numerical computation shows that the function $ T_2 = T_2(s,100) $ is convex upward with $ T_2(s,100) = 0 $ as $ s\ge 12.1537 $
Figure 2.  Comparison of $ T_1(s, D) $ and $ T_1(s, 0), T_2(s, D) $ and $ T_2(s, 0) $ when there is a small diffusion rate $ D $, as shown in Theorem 4.1(ⅰ). The solid red and blue lines represent $ T_1(s, D) $ and $ T_2(s, D) $, while the dash-dot red and blue lines represent $ T_1(s, 0) $ and $ T_2(s, 0) $, respectively. Let $ r = 0.2, c = 0.05, a_{12} = 0.1, b = b_1 = 1, D = 0.1, s = 1 $, $ a_{21} = 0.5, r_1 = 0.8, r_2 = 0.1 $. Then we have $ T_1(1, 0.1)<T_1(1,0) $ but $ T_2(1,0.1)>T_2(1,0) $
Figure 3.  Comparison of $ T_1(s, D) $ and $ T_1(s, 0), T_2(s, D) $ and $ T_2(s, 0) $ when there is a large diffusion rate $ D $, as shown in Theorem 4.2(ⅰ). The solid red and blue lines represent $ T_1(s, D) $ and $ T_2(s, D) $, while the dash-dot red and blue lines represent $ T_1(s, 0) $ and $ T_2(s, 0) $, respectively. Let $ r = 0.2, c = 0.05, a_{12} = 0.1, b = b_1 = 1, D = 100, s = 0.1 $, $ a_{21} = 0.5, r_1 = 0.8, r_2 = 0.1 $. Then we have $ T_1(0.1,100)<T_1(0.1,0) $ but $ T_2(0.1,100)>T_2(0.1,0) $
Figure 6.  The surface of $ T_2 = T_2(s,D) $ when both of $ s $ and $ D $ varies. Let $ r = 0.2, c = 0.05, a_{12} = 0.1, b = 4, b_1 = 1 $, $ a_{21} = 0.5, r_1 = 0.8, r_2 = 0.1, 0<s<6, 0<D<6 $. Numerical computation shows that for fixed $ s $, the surface decreases monotonically, which is consistent with Fig. 4. For fixed $ D $, the surface is convex upward, which is consistent with Fig. 5
[1]

Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735

[2]

Cecilia Cavaterra, Maurizio Grasselli. Asymptotic behavior of population dynamics models with nonlocal distributed delays. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 861-883. doi: 10.3934/dcds.2008.22.861

[3]

Wendi Wang. Population dispersal and disease spread. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 797-804. doi: 10.3934/dcdsb.2004.4.797

[4]

Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1

[5]

Joe Yuichiro Wakano. Spatiotemporal dynamics of cooperation and spite behavior by conformist transmission. Communications on Pure & Applied Analysis, 2012, 11 (1) : 375-386. doi: 10.3934/cpaa.2012.11.375

[6]

Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087

[7]

Salvatore Rionero. A nonlinear $L^2$-stability analysis for two-species population dynamics with dispersal. Mathematical Biosciences & Engineering, 2006, 3 (1) : 189-204. doi: 10.3934/mbe.2006.3.189

[8]

Karan Pattni, Mark Broom, Jan Rychtář. Evolving multiplayer networks: Modelling the evolution of cooperation in a mobile population. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 1975-2004. doi: 10.3934/dcdsb.2018191

[9]

Arthur D. Lander, Qing Nie, Frederic Y. M. Wan. Spatially Distributed Morphogen Production and Morphogen Gradient Formation. Mathematical Biosciences & Engineering, 2005, 2 (2) : 239-262. doi: 10.3934/mbe.2005.2.239

[10]

Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367

[11]

Long Zhang, Gao Xu, Zhidong Teng. Intermittent dispersal population model with almost period parameters and dispersal delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2011-2037. doi: 10.3934/dcdsb.2016034

[12]

Song Liang, Yuan Lou. On the dependence of population size upon random dispersal rate. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2771-2788. doi: 10.3934/dcdsb.2012.17.2771

[13]

Tarik Mohammed Touaoula. Global dynamics for a class of reaction-diffusion equations with distributed delay and neumann condition. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2473-2490. doi: 10.3934/cpaa.2020108

[14]

H. W. Broer, K. Saleh, V. Naudot, R. Roussarie. Dynamics of a predator-prey model with non-monotonic response function. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 221-251. doi: 10.3934/dcds.2007.18.221

[15]

Edoardo Beretta, Dimitri Breda. Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences & Engineering, 2016, 13 (1) : 19-41. doi: 10.3934/mbe.2016.13.19

[16]

Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed I - The case of the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 41-67. doi: 10.3934/dcds.2008.21.41

[17]

Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed II - cylindrical-type domains. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 19-61. doi: 10.3934/dcds.2009.25.19

[18]

Fei-Ying Yang, Wan-Tong Li. Dynamics of a nonlocal dispersal SIS epidemic model. Communications on Pure & Applied Analysis, 2017, 16 (3) : 781-798. doi: 10.3934/cpaa.2017037

[19]

Hong Yang, Junjie Wei. Dynamics of spatially heterogeneous viral model with time delay. Communications on Pure & Applied Analysis, 2020, 19 (1) : 85-102. doi: 10.3934/cpaa.2020005

[20]

Naveen K. Vaidya, Xianping Li, Feng-Bin Wang. Impact of spatially heterogeneous temperature on the dynamics of dengue epidemics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 321-349. doi: 10.3934/dcdsb.2018099

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (27)
  • HTML views (125)
  • Cited by (0)

Other articles
by authors

[Back to Top]