doi: 10.3934/dcdsb.2020149

Asymmetric diffusion in a two-patch mutualism system characterizing exchange of resource for resource

School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China

Received  May 2019 Revised  February 2020 Published  May 2020

Fund Project: The author is supported by NSF of P.R. China (11571382)

This paper considers a two-patch mutualism system derived from exchange of resource for resource, where the obligate mutualist can diffuse asymmetrically between patches. First, we give a complete analysis on dynamics of the system without diffusion, which exhibit how resource production of the obligate mutualist leads to its survival/extinction. Using monotone dynamics theory, we show global stability of a positive equilibrium in the three-dimensional system with diffusion. A novel finding of this work is that the obligate species' final abundance is explicitly expressed as a function of the diffusion rate and asymmetry, which demonstrates precise mechanisms by which the diffusion and asymmetry lead to the abundance higher than if non-diffusing, even though the facultative species declines. It is shown that for a fixed diffusion rate, intermediate asymmetry is favorable while extremely large asymmetry is unfavorable; For a fixed asymmetry, small diffusion is favorable while extremely large asymmetry is unfavorable. Initial densities of the species are also shown to be important in species' persistence and abundance. Numerical simulations confirm and extend our results.

Citation: Yuanshi Wang. Asymmetric diffusion in a two-patch mutualism system characterizing exchange of resource for resource. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020149
References:
[1]

R. ArditiC. Lobry and T. Sari, Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation, Theor. Popul. Biol., 106 (2015), 45-59.  doi: 10.1016/j.tpb.2015.10.001.  Google Scholar

[2]

R. ArditiC. Lobry and T. Sari, Asymmetric dispersal in the multi-patch logistic equation, Theor. Popul. Biol., 120 (2018), 11-15.  doi: 10.1016/j.tpb.2017.12.006.  Google Scholar

[3]

J. $\hat{A}$str$\ddot{o}$m and T. P$\ddot{a}$rt, Negative and matrix-dependent effects of dispersal corri- dors in an experimental metacommunity, Ecology, 94 (2013), 1939-1970.   Google Scholar

[4]

C. J. Briggs and M. F. Hoopes, Stabilizing effects in spatial parasitoid-host and predator-prey models: A review, Theor. Popul. Biol., 65 (2004), 299-315.  doi: 10.1016/j.tpb.2003.11.001.  Google Scholar

[5]

G. J. ButlerH. I. Freedman and P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Sco., 96 (1986), 425-430.  doi: 10.1090/S0002-9939-1986-0822433-4.  Google Scholar

[6]

L. Fahrig, Effect of habitat fragmentation on the extinction threshold: A synthesis, Ecol. Appl., 12 (2002), 346-353.   Google Scholar

[7]

H. I. Freedman and D. Waltman, Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator, SIAM J Appl Math., 32 (1977), 631-648.  doi: 10.1137/0132052.  Google Scholar

[8] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, UK, 1998.  doi: 10.1017/CBO9781139173179.  Google Scholar
[9]

R. D. Holt, Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution, Theor. Popul. Biol., 28 (1985), 181-208.  doi: 10.1016/0040-5809(85)90027-9.  Google Scholar

[10]

J. N. Holland and D. L. DeAngelis, A consumer-resource approach to the density-dependent population dynamics of mutualism, Ecology, 91 (2010), 1286-1295.   Google Scholar

[11]

V. HutsonY. Lou and K. Mischaikow, Convergence in competition models with small diffusion coefficients, J. Diff. Equa., 211 (2005), 135-161.  doi: 10.1016/j.jde.2004.06.003.  Google Scholar

[12]

V. A. A. Jansen, The dynamics of two diffusively coupled predator-prey populations, Theor. Popul. Biol., 59 (2001), 119-131.  doi: 10.1006/tpbi.2000.1506.  Google Scholar

[13]

J. Jiang, Three- and four-dimensional cooperative systems with every equilibrium stable, J. Math. Anal. Appl., 188 (1994), 92-100.  doi: 10.1006/jmaa.1994.1413.  Google Scholar

[14]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Diff. Equa., 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[15]

T. A. Revilla, Numerical responses in resource-based mutualisms: A time scale approach, J. Theor. Biol., 378 (2015), 39-46.  doi: 10.1016/j.jtbi.2015.04.012.  Google Scholar

[16]

S. Rinaldi and M. Scheffer, Geometric analysis of ecological models with slow and fast processes, Ecosystems, 3 (2000), 507-521.  doi: 10.1007/s100210000045.  Google Scholar

[17]

A. Ruiz-Herrera and P. J. Torres, Effects of diffusion on total biomass in simple metacommunities, J. Theor. Biol., 447 (2018), 12-24.  doi: 10.1016/j.jtbi.2018.03.018.  Google Scholar

[18] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soci. Press, New York, USA, 1995.   Google Scholar
[19] H. L. Smith and P. Waltman, The Theory of the Chemostat, New York: Cambridge University Press, 1995.  doi: 10.1017/CBO9780511530043.  Google Scholar
[20]

G. Takimoto and K. Suzuki, Global stability of obligate mutualism in community modules with facultative mutualists, OIKOS, 125 (2015), 535-540.  doi: 10.1111/oik.02741.  Google Scholar

[21]

J. J. Tewksbury et al., Corridors affect plants, animals, and their interactions in fragmented landscapes, Proc. Natl. Acad. Sci. U.S.A., 99 (2002), 12923-12926. Google Scholar

[22]

Y. Wang and D. L. DeAngelis, Comparison of effects of diffusion in heterogeneous and homogeneous with the same total carrying capacity on total realized population size, Theor. Popul. Biol., 125 (2019), 30-37.   Google Scholar

[23]

Y. WangH. Wu and D. L. DeAngelis, Global dynamics of a mutualism-competition model with one resource and multiple consumers, J. Math. Biol., 78 (2019), 683-710.  doi: 10.1007/s00285-018-1288-9.  Google Scholar

[24]

B. ZhangK. AlexM. L. KeenanZ. LuL. R. ArrixW.-M. NiD. L. DeAngelis and J. D. Dyken, Carrying capacity in a heterogeneous environment with habitat connectivity, Ecology Letters, 20 (2017), 1118-1128.  doi: 10.1111/ele.12807.  Google Scholar

show all references

References:
[1]

R. ArditiC. Lobry and T. Sari, Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation, Theor. Popul. Biol., 106 (2015), 45-59.  doi: 10.1016/j.tpb.2015.10.001.  Google Scholar

[2]

R. ArditiC. Lobry and T. Sari, Asymmetric dispersal in the multi-patch logistic equation, Theor. Popul. Biol., 120 (2018), 11-15.  doi: 10.1016/j.tpb.2017.12.006.  Google Scholar

[3]

J. $\hat{A}$str$\ddot{o}$m and T. P$\ddot{a}$rt, Negative and matrix-dependent effects of dispersal corri- dors in an experimental metacommunity, Ecology, 94 (2013), 1939-1970.   Google Scholar

[4]

C. J. Briggs and M. F. Hoopes, Stabilizing effects in spatial parasitoid-host and predator-prey models: A review, Theor. Popul. Biol., 65 (2004), 299-315.  doi: 10.1016/j.tpb.2003.11.001.  Google Scholar

[5]

G. J. ButlerH. I. Freedman and P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Sco., 96 (1986), 425-430.  doi: 10.1090/S0002-9939-1986-0822433-4.  Google Scholar

[6]

L. Fahrig, Effect of habitat fragmentation on the extinction threshold: A synthesis, Ecol. Appl., 12 (2002), 346-353.   Google Scholar

[7]

H. I. Freedman and D. Waltman, Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator, SIAM J Appl Math., 32 (1977), 631-648.  doi: 10.1137/0132052.  Google Scholar

[8] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, UK, 1998.  doi: 10.1017/CBO9781139173179.  Google Scholar
[9]

R. D. Holt, Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution, Theor. Popul. Biol., 28 (1985), 181-208.  doi: 10.1016/0040-5809(85)90027-9.  Google Scholar

[10]

J. N. Holland and D. L. DeAngelis, A consumer-resource approach to the density-dependent population dynamics of mutualism, Ecology, 91 (2010), 1286-1295.   Google Scholar

[11]

V. HutsonY. Lou and K. Mischaikow, Convergence in competition models with small diffusion coefficients, J. Diff. Equa., 211 (2005), 135-161.  doi: 10.1016/j.jde.2004.06.003.  Google Scholar

[12]

V. A. A. Jansen, The dynamics of two diffusively coupled predator-prey populations, Theor. Popul. Biol., 59 (2001), 119-131.  doi: 10.1006/tpbi.2000.1506.  Google Scholar

[13]

J. Jiang, Three- and four-dimensional cooperative systems with every equilibrium stable, J. Math. Anal. Appl., 188 (1994), 92-100.  doi: 10.1006/jmaa.1994.1413.  Google Scholar

[14]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Diff. Equa., 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[15]

T. A. Revilla, Numerical responses in resource-based mutualisms: A time scale approach, J. Theor. Biol., 378 (2015), 39-46.  doi: 10.1016/j.jtbi.2015.04.012.  Google Scholar

[16]

S. Rinaldi and M. Scheffer, Geometric analysis of ecological models with slow and fast processes, Ecosystems, 3 (2000), 507-521.  doi: 10.1007/s100210000045.  Google Scholar

[17]

A. Ruiz-Herrera and P. J. Torres, Effects of diffusion on total biomass in simple metacommunities, J. Theor. Biol., 447 (2018), 12-24.  doi: 10.1016/j.jtbi.2018.03.018.  Google Scholar

[18] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soci. Press, New York, USA, 1995.   Google Scholar
[19] H. L. Smith and P. Waltman, The Theory of the Chemostat, New York: Cambridge University Press, 1995.  doi: 10.1017/CBO9780511530043.  Google Scholar
[20]

G. Takimoto and K. Suzuki, Global stability of obligate mutualism in community modules with facultative mutualists, OIKOS, 125 (2015), 535-540.  doi: 10.1111/oik.02741.  Google Scholar

[21]

J. J. Tewksbury et al., Corridors affect plants, animals, and their interactions in fragmented landscapes, Proc. Natl. Acad. Sci. U.S.A., 99 (2002), 12923-12926. Google Scholar

[22]

Y. Wang and D. L. DeAngelis, Comparison of effects of diffusion in heterogeneous and homogeneous with the same total carrying capacity on total realized population size, Theor. Popul. Biol., 125 (2019), 30-37.   Google Scholar

[23]

Y. WangH. Wu and D. L. DeAngelis, Global dynamics of a mutualism-competition model with one resource and multiple consumers, J. Math. Biol., 78 (2019), 683-710.  doi: 10.1007/s00285-018-1288-9.  Google Scholar

[24]

B. ZhangK. AlexM. L. KeenanZ. LuL. R. ArrixW.-M. NiD. L. DeAngelis and J. D. Dyken, Carrying capacity in a heterogeneous environment with habitat connectivity, Ecology Letters, 20 (2017), 1118-1128.  doi: 10.1111/ele.12807.  Google Scholar

Figure 1.  Phase-plane diagram of system (5). Stable and unstable equilibria are identified by solid and open circles, respectively. Vector fields are shown by green arrows. Isoclines of species $ u,v_1 $ are represented by red and blue lines, respectively. Fix $ r = r_1 = c = 1 $. (a) Let $ a_{12} = 2.5, a_{21} = 1.3 $. Equilibrium $ E^+(2.7,2.5) $ is globally asymptotically stable. (b) Let $ a_{12} = 4.5, a_{21} = 0.9 $. There are two positive equilibria $ E^-(1.25,0.14) $ and $ E^+(2.79,1.5) $. (c) Let $ a_{12} = 3.5, a_{21} = 0.9 $. The equilibria $ E^- $ and $ E^+ $ coincide and form a saddle-node point $ E^\pm(1.6,0.45) $. In the cases of (b-c), the separatrices (the black line) of $ E^- $ subdivide the first quadrant into two regions: one is the basin of attraction of $ E_1 $ while the other is that of $ E^+ $. (d) Let $ a_{12} = 2.5, a_{21} = 0.5 $. All positive solutions converge to equilibrium $ E_1(1,0) $
Figure 4.  Comparison of $ T_1(s, 0) $ and $ T_2(s, D) $ when there is diffusion $ D $ as shown in Theorem 4.1(ⅰ). The solid blue line represents $ T_2(s, D) $, while the dash-dot red line represents $ T_1(s, 0) $. Let $ r = 0.2, c = 0.05, a_{12} = 0.1, b = b_1 = 1, s = 1 $, $ a_{21} = 0.5, r_1 = 0.8, r_2 = 0.1 $. (a) When $ s = 1 $, we have $ T_2>T_1 $ for $ D>0 $. (b) When $ s = 10 $, we have $ T_2>T_1 $ as $ 0<D< 0.0135 $ while $ T_2<T_1 $ as $ D> 0.0135 $
Figure 5.  Comparison of $ T_1(s, 0) $ and $ T_2(s,100) $ when there is asymmetry $ s $ in large diffusion as shown in Theorem 4.2(ⅰ). The solid blue line represents $ T_2(s,100) $, while the dash-dot red line represents $ T_1(s, 0) $. Let $ r = 0.2, c = 0.05, a_{12} = 0.1, b = b_1 = 1, D = 100 $, $ a_{21} = 0.5, r_1 = 0.8, r_2 = 0.1 $. Then we have $ T_1(s, 0) = 1.9233 $ and $ T_2(s,100)>T_1(s, 0) $ as $ 0.1935< s< 9.3201 $. Numerical computation shows that the function $ T_2 = T_2(s,100) $ is convex upward with $ T_2(s,100) = 0 $ as $ s\ge 12.1537 $
Figure 2.  Comparison of $ T_1(s, D) $ and $ T_1(s, 0), T_2(s, D) $ and $ T_2(s, 0) $ when there is a small diffusion rate $ D $, as shown in Theorem 4.1(ⅰ). The solid red and blue lines represent $ T_1(s, D) $ and $ T_2(s, D) $, while the dash-dot red and blue lines represent $ T_1(s, 0) $ and $ T_2(s, 0) $, respectively. Let $ r = 0.2, c = 0.05, a_{12} = 0.1, b = b_1 = 1, D = 0.1, s = 1 $, $ a_{21} = 0.5, r_1 = 0.8, r_2 = 0.1 $. Then we have $ T_1(1, 0.1)<T_1(1,0) $ but $ T_2(1,0.1)>T_2(1,0) $
Figure 3.  Comparison of $ T_1(s, D) $ and $ T_1(s, 0), T_2(s, D) $ and $ T_2(s, 0) $ when there is a large diffusion rate $ D $, as shown in Theorem 4.2(ⅰ). The solid red and blue lines represent $ T_1(s, D) $ and $ T_2(s, D) $, while the dash-dot red and blue lines represent $ T_1(s, 0) $ and $ T_2(s, 0) $, respectively. Let $ r = 0.2, c = 0.05, a_{12} = 0.1, b = b_1 = 1, D = 100, s = 0.1 $, $ a_{21} = 0.5, r_1 = 0.8, r_2 = 0.1 $. Then we have $ T_1(0.1,100)<T_1(0.1,0) $ but $ T_2(0.1,100)>T_2(0.1,0) $
Figure 6.  The surface of $ T_2 = T_2(s,D) $ when both of $ s $ and $ D $ varies. Let $ r = 0.2, c = 0.05, a_{12} = 0.1, b = 4, b_1 = 1 $, $ a_{21} = 0.5, r_1 = 0.8, r_2 = 0.1, 0<s<6, 0<D<6 $. Numerical computation shows that for fixed $ s $, the surface decreases monotonically, which is consistent with Fig. 4. For fixed $ D $, the surface is convex upward, which is consistent with Fig. 5
[1]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[2]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[5]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[6]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[7]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[8]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[9]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[10]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[11]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[14]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[15]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[16]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]