doi: 10.3934/dcdsb.2020151

Time scale-induced asynchronous discrete dynamical systems

1. 

Center for Dynamics & Institute for Analysis, Faculty of Mathematics, Technische Universität Dresden, 01062, Dresden, Germany

2. 

Dept. of Mathematics and NTIS, University of West Bohemia, Univerzitní 8, 30614 Pilsen, Pilsen, Czech Republic

* Corresponding author: Petr Stehlík

Received  July 2019 Revised  February 2020 Published  May 2020

We study two coupled discrete-time equations with different (asynchronous) periodic time scales. The coupling is of the type sample and hold, i.e., the state of each equation is sampled at its update times and held until it is read as an input at the next update time for the other equation. We construct an interpolating two-dimensional complex-valued system on the union of the two time scales and an extrapolating four-dimensional system on the intersection of the two time scales. We discuss stability by several results, examples and counterexamples in various frameworks to show that the asynchronicity can have a significant impact on the dynamical properties.

Citation: Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020151
References:
[1]

D. Aubry and G. Puel, Two-timescale homogenization method for the modeling of material fatigue, IOP Conference Series: Materials Science and Engineering, 10 (2010), Article no. 012113. doi: 10.1088/1757-899X/10/1/012113.  Google Scholar

[2]

G. M. Baudet, Asynchronous iterative methods for multiprocessors, Journal of the ACM (JACM), 25 (1978), 226-244.  doi: 10.1145/322063.322067.  Google Scholar

[3]

D. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Prentice Hall, 1989. Includes corrections (1997). Athena Scientific, Belmont, MA, 2014.  Google Scholar

[4]

M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001. doi: 10.1007/978-1-4612-0201-1.  Google Scholar

[5]

R. BruL. Elsner and M. Neumann., Convergence of infinite products of matrices and inner-outer iteration schemes, Electronic Transactions on Numerical Analysis, 2 (1994), 183-193.   Google Scholar

[6]

D. Chazan and W. Miranker, Chaotic relaxation, Linear Algebra and its Applications, 2 (1969), 199-222.  doi: 10.1016/0024-3795(69)90028-7.  Google Scholar

[7]

T. S. Doan, A. Kalauch and S. Siegmund, A constructive approach to linear Lyapunov functions for positive switched systems using Collatz-Wielandt sets, IEEE Transactions on Automatic Control, 58 (2013), 748–751. doi: 10.1109/TAC.2012.2209270.  Google Scholar

[8]

S. Elaydi and S. Zhang, Stability and periodicity of difference equations with finite delay, Funkcial. Ekvac, 37 (1994), 401-413.   Google Scholar

[9]

A. Frommer and D. B. Szyld, On asynchronous iterations, Journal of Computational and Applied Mathematics, 123 (2000), 201–216. Numerical analysis 2000, Vol. III. Linear algebra. doi: 10.1016/S0377-0427(00)00409-X.  Google Scholar

[10]

A. Hassibi, S. P. Boyd and J. P. How, Control of asynchronous dynamical systems with rate constraints on events, Proceedings of the 38th IEEE Conference on Decision and Control, 1999, 1345–1351. doi: 10.1109/CDC.1999.830133.  Google Scholar

[11]

H. Heaton and Y. Censor, Asynchronous sequential inertial iterations for common fixed points problems with an application to linear systems, Journal of Global Optimization, 74 (2019), 95-119.  doi: 10.1007/s10898-019-00747-4.  Google Scholar

[12]

K. HeliövaaraR. Väisänen and C. Simon, Evolutionary ecology of periodical insects, Trends in Ecology and Evolution, 9 (1994), 475-480.   Google Scholar

[13]

N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, 2008. doi: 10.1137/1.9780898717778.  Google Scholar

[14]

S. Hilger, Analysis on measure chains – a unified approach to continuous and discrete calculus, Results Math, 18 (1990), 18-56.  doi: 10.1007/BF03323153.  Google Scholar

[15]

E. Kaszkurewicz and A. Bhaya, Matrix Diagonal Stability in Systems and Computation, Birkhäuser Boston, 2000. doi: 10.1007/978-1-4612-1346-8.  Google Scholar

[16] W. Kelley and A. Peterson, Difference Equations. An Introduction with Applications, Academic Press, London, 2001.   Google Scholar
[17]

P. Klemperer, Competition when Consumers have Switching Costs: An Overview with Applications to Industrial Organization, Macroeconomics, and International Trade, The Review of Economic Studies, 62 (1995), 515-539.  doi: 10.2307/2298075.  Google Scholar

[18]

A. F. KleptsynM. A. Krasnosel'skiĭN. A. Kuznetsov and V. S. Kozyakin, Desynchronization of linear systems, Mathematics and Computers in Simulation, 26 (1984), 423-431.  doi: 10.1016/0378-4754(84)90106-X.  Google Scholar

[19]

V. Kozyakin, A short introduction to asynchronous systems, In Proceedings of the Sixth International Conference on Difference Equations, 2004,153–165.  Google Scholar

[20]

R. Lagunoff and A. Matsui, Asynchronous choice in repeated coordination games, Econometrica, 65 (1997), 1467-1477.  doi: 10.2307/2171745.  Google Scholar

[21]

C. Lorand and P. Bauer, A factorization approach to the analysis of asynchronous interconnected discrete-time systems with arbitrary clock ratios, In Proceedings of the American Control Conference, 2004,349–354. Google Scholar

[22]

C. Lorand and P. Bauer., Interconnected discrete-time systems with incommensurate clock frequencies, In Proceedings of the IEEE Conference on Decision and Control, 2004,935–940. Google Scholar

[23]

J. Libich and P. Stehlík, Endogenous Monetary Commitment, Economic Letters, 112 (2011), 103-106.  doi: 10.1016/j.econlet.2011.03.030.  Google Scholar

[24]

J. Libich and P. Stehlík, Incorporating rigidity and commitment in the timing structure of macroeconomic games, Economic Modelling, 27 (2010), 767-781.  doi: 10.1016/j.econmod.2010.01.020.  Google Scholar

[25]

H. Lütkepohl, Handbook of Matrices, John Wiley & Sons, Ltd., Chichester, 1996.  Google Scholar

[26]

J. D. Murray, Mathematical Biology II, Springer, 2003.  Google Scholar

[27]

K. Ogata, Discrete-time Control Systems, Prentice Hall Englewood Cliffs, NJ, 1995. Google Scholar

[28]

C. PötzscheS. Siegmund and F. Wirth, A spectral characterization of exponential stability for linear time-invariant systems on time scales, Discrete Contin. Dyn. Syst., 9 (2003), 1223-1241.  doi: 10.3934/dcds.2003.9.1223.  Google Scholar

[29]

R. ShortenF. WirthO. MasonK. Wulff and C. King, Stability criteria for switched and hybrid systems, SIAM Review, 49 (2007), 545-592.  doi: 10.1137/05063516X.  Google Scholar

[30]

W. Shou, C. T. Bergstrom, A. K. Chakraborty and F. K. Skinner, Theory, models and biology, ELife, 4 (2015), e07158. doi: 10.7554/eLife.07158.  Google Scholar

[31]

A. Slavík, Dynamic equations on time scales and generalized ordinary differential equations, J. Math. Anal. Appl., 385 (2012), 534-550.  doi: 10.1016/j.jmaa.2011.06.068.  Google Scholar

[32]

Y. SuA. BhayaE. Kaszkurewicz and V. S. Kozyakin, Further results on convergence of asynchronous linear iterations, Linear Algebra and its Applications, 281 (1998), 11-24.  doi: 10.1016/S0024-3795(98)10030-7.  Google Scholar

[33]

J. Tobin, Money and Finance in the Macroeconomic Process, Journal of Money, Credit and Banking, 14 (1982), 171–204. doi: 10.2307/1991638.  Google Scholar

[34]

Q. Yu and J. Fish, Temporal homogenization of viscoelastic and viscoplastic solids subjected to locally periodic loading, Computational Mechanics, 29 (2002), 199-211.  doi: 10.1007/s00466-002-0334-y.  Google Scholar

show all references

References:
[1]

D. Aubry and G. Puel, Two-timescale homogenization method for the modeling of material fatigue, IOP Conference Series: Materials Science and Engineering, 10 (2010), Article no. 012113. doi: 10.1088/1757-899X/10/1/012113.  Google Scholar

[2]

G. M. Baudet, Asynchronous iterative methods for multiprocessors, Journal of the ACM (JACM), 25 (1978), 226-244.  doi: 10.1145/322063.322067.  Google Scholar

[3]

D. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Prentice Hall, 1989. Includes corrections (1997). Athena Scientific, Belmont, MA, 2014.  Google Scholar

[4]

M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001. doi: 10.1007/978-1-4612-0201-1.  Google Scholar

[5]

R. BruL. Elsner and M. Neumann., Convergence of infinite products of matrices and inner-outer iteration schemes, Electronic Transactions on Numerical Analysis, 2 (1994), 183-193.   Google Scholar

[6]

D. Chazan and W. Miranker, Chaotic relaxation, Linear Algebra and its Applications, 2 (1969), 199-222.  doi: 10.1016/0024-3795(69)90028-7.  Google Scholar

[7]

T. S. Doan, A. Kalauch and S. Siegmund, A constructive approach to linear Lyapunov functions for positive switched systems using Collatz-Wielandt sets, IEEE Transactions on Automatic Control, 58 (2013), 748–751. doi: 10.1109/TAC.2012.2209270.  Google Scholar

[8]

S. Elaydi and S. Zhang, Stability and periodicity of difference equations with finite delay, Funkcial. Ekvac, 37 (1994), 401-413.   Google Scholar

[9]

A. Frommer and D. B. Szyld, On asynchronous iterations, Journal of Computational and Applied Mathematics, 123 (2000), 201–216. Numerical analysis 2000, Vol. III. Linear algebra. doi: 10.1016/S0377-0427(00)00409-X.  Google Scholar

[10]

A. Hassibi, S. P. Boyd and J. P. How, Control of asynchronous dynamical systems with rate constraints on events, Proceedings of the 38th IEEE Conference on Decision and Control, 1999, 1345–1351. doi: 10.1109/CDC.1999.830133.  Google Scholar

[11]

H. Heaton and Y. Censor, Asynchronous sequential inertial iterations for common fixed points problems with an application to linear systems, Journal of Global Optimization, 74 (2019), 95-119.  doi: 10.1007/s10898-019-00747-4.  Google Scholar

[12]

K. HeliövaaraR. Väisänen and C. Simon, Evolutionary ecology of periodical insects, Trends in Ecology and Evolution, 9 (1994), 475-480.   Google Scholar

[13]

N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, 2008. doi: 10.1137/1.9780898717778.  Google Scholar

[14]

S. Hilger, Analysis on measure chains – a unified approach to continuous and discrete calculus, Results Math, 18 (1990), 18-56.  doi: 10.1007/BF03323153.  Google Scholar

[15]

E. Kaszkurewicz and A. Bhaya, Matrix Diagonal Stability in Systems and Computation, Birkhäuser Boston, 2000. doi: 10.1007/978-1-4612-1346-8.  Google Scholar

[16] W. Kelley and A. Peterson, Difference Equations. An Introduction with Applications, Academic Press, London, 2001.   Google Scholar
[17]

P. Klemperer, Competition when Consumers have Switching Costs: An Overview with Applications to Industrial Organization, Macroeconomics, and International Trade, The Review of Economic Studies, 62 (1995), 515-539.  doi: 10.2307/2298075.  Google Scholar

[18]

A. F. KleptsynM. A. Krasnosel'skiĭN. A. Kuznetsov and V. S. Kozyakin, Desynchronization of linear systems, Mathematics and Computers in Simulation, 26 (1984), 423-431.  doi: 10.1016/0378-4754(84)90106-X.  Google Scholar

[19]

V. Kozyakin, A short introduction to asynchronous systems, In Proceedings of the Sixth International Conference on Difference Equations, 2004,153–165.  Google Scholar

[20]

R. Lagunoff and A. Matsui, Asynchronous choice in repeated coordination games, Econometrica, 65 (1997), 1467-1477.  doi: 10.2307/2171745.  Google Scholar

[21]

C. Lorand and P. Bauer, A factorization approach to the analysis of asynchronous interconnected discrete-time systems with arbitrary clock ratios, In Proceedings of the American Control Conference, 2004,349–354. Google Scholar

[22]

C. Lorand and P. Bauer., Interconnected discrete-time systems with incommensurate clock frequencies, In Proceedings of the IEEE Conference on Decision and Control, 2004,935–940. Google Scholar

[23]

J. Libich and P. Stehlík, Endogenous Monetary Commitment, Economic Letters, 112 (2011), 103-106.  doi: 10.1016/j.econlet.2011.03.030.  Google Scholar

[24]

J. Libich and P. Stehlík, Incorporating rigidity and commitment in the timing structure of macroeconomic games, Economic Modelling, 27 (2010), 767-781.  doi: 10.1016/j.econmod.2010.01.020.  Google Scholar

[25]

H. Lütkepohl, Handbook of Matrices, John Wiley & Sons, Ltd., Chichester, 1996.  Google Scholar

[26]

J. D. Murray, Mathematical Biology II, Springer, 2003.  Google Scholar

[27]

K. Ogata, Discrete-time Control Systems, Prentice Hall Englewood Cliffs, NJ, 1995. Google Scholar

[28]

C. PötzscheS. Siegmund and F. Wirth, A spectral characterization of exponential stability for linear time-invariant systems on time scales, Discrete Contin. Dyn. Syst., 9 (2003), 1223-1241.  doi: 10.3934/dcds.2003.9.1223.  Google Scholar

[29]

R. ShortenF. WirthO. MasonK. Wulff and C. King, Stability criteria for switched and hybrid systems, SIAM Review, 49 (2007), 545-592.  doi: 10.1137/05063516X.  Google Scholar

[30]

W. Shou, C. T. Bergstrom, A. K. Chakraborty and F. K. Skinner, Theory, models and biology, ELife, 4 (2015), e07158. doi: 10.7554/eLife.07158.  Google Scholar

[31]

A. Slavík, Dynamic equations on time scales and generalized ordinary differential equations, J. Math. Anal. Appl., 385 (2012), 534-550.  doi: 10.1016/j.jmaa.2011.06.068.  Google Scholar

[32]

Y. SuA. BhayaE. Kaszkurewicz and V. S. Kozyakin, Further results on convergence of asynchronous linear iterations, Linear Algebra and its Applications, 281 (1998), 11-24.  doi: 10.1016/S0024-3795(98)10030-7.  Google Scholar

[33]

J. Tobin, Money and Finance in the Macroeconomic Process, Journal of Money, Credit and Banking, 14 (1982), 171–204. doi: 10.2307/1991638.  Google Scholar

[34]

Q. Yu and J. Fish, Temporal homogenization of viscoelastic and viscoplastic solids subjected to locally periodic loading, Computational Mechanics, 29 (2002), 199-211.  doi: 10.1007/s00466-002-0334-y.  Google Scholar

Figure 1.  Time scales $ \mathbb{T}_3 $ and $ \mathbb{T}_5 $ of a $ (3,5) $-asynchronous discrete dynamical system (3)
Figure 2.  Time scales related to dynamically equivalent (2, 3)- and (6, 1)-asynchronous discrete dynamical systems from Example 7.3
Table 1.  9 possible forms of the one-step evolution operator $ A(t) $, $ t,\sigma(t)\in \mathbb{T} $ associated with the system (8), see Corollary 2. The pictograms illustrate each quadruple $ (i,j,k,\ell) = \big(1_{ \mathbb{T}_{\mu}}(t), 1_{ \mathbb{T}_{\mu}}(\sigma(t)), 1_{ \mathbb{T}_{\nu}}(t), 1_{ \mathbb{T}_{\nu}}(\sigma(t))\big) $, squares correspond to $ \mathbb{T}_\mu $, circles to $ \mathbb{T}_\nu $, the left symbols to time $ t\in \mathbb{T} $ and the right symbols to $ \sigma(t)\in \mathbb{T} $
[1]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[2]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[3]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[4]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[5]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[6]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[7]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[8]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[9]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[10]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[11]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[12]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[13]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[14]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[15]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[16]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[17]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[18]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[19]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[20]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (40)
  • HTML views (224)
  • Cited by (0)

Other articles
by authors

[Back to Top]