• Previous Article
    Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity
  • DCDS-B Home
  • This Issue
  • Next Article
    Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force
February  2021, 26(2): 1011-1029. doi: 10.3934/dcdsb.2020151

Time scale-induced asynchronous discrete dynamical systems

1. 

Center for Dynamics & Institute for Analysis, Faculty of Mathematics, Technische Universität Dresden, 01062, Dresden, Germany

2. 

Dept. of Mathematics and NTIS, University of West Bohemia, Univerzitní 8, 30614 Pilsen, Pilsen, Czech Republic

* Corresponding author: Petr Stehlík

Received  July 2019 Revised  February 2020 Published  May 2020

We study two coupled discrete-time equations with different (asynchronous) periodic time scales. The coupling is of the type sample and hold, i.e., the state of each equation is sampled at its update times and held until it is read as an input at the next update time for the other equation. We construct an interpolating two-dimensional complex-valued system on the union of the two time scales and an extrapolating four-dimensional system on the intersection of the two time scales. We discuss stability by several results, examples and counterexamples in various frameworks to show that the asynchronicity can have a significant impact on the dynamical properties.

Citation: Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151
References:
[1]

D. Aubry and G. Puel, Two-timescale homogenization method for the modeling of material fatigue, IOP Conference Series: Materials Science and Engineering, 10 (2010), Article no. 012113. doi: 10.1088/1757-899X/10/1/012113.  Google Scholar

[2]

G. M. Baudet, Asynchronous iterative methods for multiprocessors, Journal of the ACM (JACM), 25 (1978), 226-244.  doi: 10.1145/322063.322067.  Google Scholar

[3]

D. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Prentice Hall, 1989. Includes corrections (1997). Athena Scientific, Belmont, MA, 2014.  Google Scholar

[4]

M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001. doi: 10.1007/978-1-4612-0201-1.  Google Scholar

[5]

R. BruL. Elsner and M. Neumann., Convergence of infinite products of matrices and inner-outer iteration schemes, Electronic Transactions on Numerical Analysis, 2 (1994), 183-193.   Google Scholar

[6]

D. Chazan and W. Miranker, Chaotic relaxation, Linear Algebra and its Applications, 2 (1969), 199-222.  doi: 10.1016/0024-3795(69)90028-7.  Google Scholar

[7]

T. S. Doan, A. Kalauch and S. Siegmund, A constructive approach to linear Lyapunov functions for positive switched systems using Collatz-Wielandt sets, IEEE Transactions on Automatic Control, 58 (2013), 748–751. doi: 10.1109/TAC.2012.2209270.  Google Scholar

[8]

S. Elaydi and S. Zhang, Stability and periodicity of difference equations with finite delay, Funkcial. Ekvac, 37 (1994), 401-413.   Google Scholar

[9]

A. Frommer and D. B. Szyld, On asynchronous iterations, Journal of Computational and Applied Mathematics, 123 (2000), 201–216. Numerical analysis 2000, Vol. III. Linear algebra. doi: 10.1016/S0377-0427(00)00409-X.  Google Scholar

[10]

A. Hassibi, S. P. Boyd and J. P. How, Control of asynchronous dynamical systems with rate constraints on events, Proceedings of the 38th IEEE Conference on Decision and Control, 1999, 1345–1351. doi: 10.1109/CDC.1999.830133.  Google Scholar

[11]

H. Heaton and Y. Censor, Asynchronous sequential inertial iterations for common fixed points problems with an application to linear systems, Journal of Global Optimization, 74 (2019), 95-119.  doi: 10.1007/s10898-019-00747-4.  Google Scholar

[12]

K. HeliövaaraR. Väisänen and C. Simon, Evolutionary ecology of periodical insects, Trends in Ecology and Evolution, 9 (1994), 475-480.   Google Scholar

[13]

N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, 2008. doi: 10.1137/1.9780898717778.  Google Scholar

[14]

S. Hilger, Analysis on measure chains – a unified approach to continuous and discrete calculus, Results Math, 18 (1990), 18-56.  doi: 10.1007/BF03323153.  Google Scholar

[15]

E. Kaszkurewicz and A. Bhaya, Matrix Diagonal Stability in Systems and Computation, Birkhäuser Boston, 2000. doi: 10.1007/978-1-4612-1346-8.  Google Scholar

[16] W. Kelley and A. Peterson, Difference Equations. An Introduction with Applications, Academic Press, London, 2001.   Google Scholar
[17]

P. Klemperer, Competition when Consumers have Switching Costs: An Overview with Applications to Industrial Organization, Macroeconomics, and International Trade, The Review of Economic Studies, 62 (1995), 515-539.  doi: 10.2307/2298075.  Google Scholar

[18]

A. F. KleptsynM. A. Krasnosel'skiĭN. A. Kuznetsov and V. S. Kozyakin, Desynchronization of linear systems, Mathematics and Computers in Simulation, 26 (1984), 423-431.  doi: 10.1016/0378-4754(84)90106-X.  Google Scholar

[19]

V. Kozyakin, A short introduction to asynchronous systems, In Proceedings of the Sixth International Conference on Difference Equations, 2004,153–165.  Google Scholar

[20]

R. Lagunoff and A. Matsui, Asynchronous choice in repeated coordination games, Econometrica, 65 (1997), 1467-1477.  doi: 10.2307/2171745.  Google Scholar

[21]

C. Lorand and P. Bauer, A factorization approach to the analysis of asynchronous interconnected discrete-time systems with arbitrary clock ratios, In Proceedings of the American Control Conference, 2004,349–354. Google Scholar

[22]

C. Lorand and P. Bauer., Interconnected discrete-time systems with incommensurate clock frequencies, In Proceedings of the IEEE Conference on Decision and Control, 2004,935–940. Google Scholar

[23]

J. Libich and P. Stehlík, Endogenous Monetary Commitment, Economic Letters, 112 (2011), 103-106.  doi: 10.1016/j.econlet.2011.03.030.  Google Scholar

[24]

J. Libich and P. Stehlík, Incorporating rigidity and commitment in the timing structure of macroeconomic games, Economic Modelling, 27 (2010), 767-781.  doi: 10.1016/j.econmod.2010.01.020.  Google Scholar

[25]

H. Lütkepohl, Handbook of Matrices, John Wiley & Sons, Ltd., Chichester, 1996.  Google Scholar

[26]

J. D. Murray, Mathematical Biology II, Springer, 2003.  Google Scholar

[27]

K. Ogata, Discrete-time Control Systems, Prentice Hall Englewood Cliffs, NJ, 1995. Google Scholar

[28]

C. PötzscheS. Siegmund and F. Wirth, A spectral characterization of exponential stability for linear time-invariant systems on time scales, Discrete Contin. Dyn. Syst., 9 (2003), 1223-1241.  doi: 10.3934/dcds.2003.9.1223.  Google Scholar

[29]

R. ShortenF. WirthO. MasonK. Wulff and C. King, Stability criteria for switched and hybrid systems, SIAM Review, 49 (2007), 545-592.  doi: 10.1137/05063516X.  Google Scholar

[30]

W. Shou, C. T. Bergstrom, A. K. Chakraborty and F. K. Skinner, Theory, models and biology, ELife, 4 (2015), e07158. doi: 10.7554/eLife.07158.  Google Scholar

[31]

A. Slavík, Dynamic equations on time scales and generalized ordinary differential equations, J. Math. Anal. Appl., 385 (2012), 534-550.  doi: 10.1016/j.jmaa.2011.06.068.  Google Scholar

[32]

Y. SuA. BhayaE. Kaszkurewicz and V. S. Kozyakin, Further results on convergence of asynchronous linear iterations, Linear Algebra and its Applications, 281 (1998), 11-24.  doi: 10.1016/S0024-3795(98)10030-7.  Google Scholar

[33]

J. Tobin, Money and Finance in the Macroeconomic Process, Journal of Money, Credit and Banking, 14 (1982), 171–204. doi: 10.2307/1991638.  Google Scholar

[34]

Q. Yu and J. Fish, Temporal homogenization of viscoelastic and viscoplastic solids subjected to locally periodic loading, Computational Mechanics, 29 (2002), 199-211.  doi: 10.1007/s00466-002-0334-y.  Google Scholar

show all references

References:
[1]

D. Aubry and G. Puel, Two-timescale homogenization method for the modeling of material fatigue, IOP Conference Series: Materials Science and Engineering, 10 (2010), Article no. 012113. doi: 10.1088/1757-899X/10/1/012113.  Google Scholar

[2]

G. M. Baudet, Asynchronous iterative methods for multiprocessors, Journal of the ACM (JACM), 25 (1978), 226-244.  doi: 10.1145/322063.322067.  Google Scholar

[3]

D. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Prentice Hall, 1989. Includes corrections (1997). Athena Scientific, Belmont, MA, 2014.  Google Scholar

[4]

M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001. doi: 10.1007/978-1-4612-0201-1.  Google Scholar

[5]

R. BruL. Elsner and M. Neumann., Convergence of infinite products of matrices and inner-outer iteration schemes, Electronic Transactions on Numerical Analysis, 2 (1994), 183-193.   Google Scholar

[6]

D. Chazan and W. Miranker, Chaotic relaxation, Linear Algebra and its Applications, 2 (1969), 199-222.  doi: 10.1016/0024-3795(69)90028-7.  Google Scholar

[7]

T. S. Doan, A. Kalauch and S. Siegmund, A constructive approach to linear Lyapunov functions for positive switched systems using Collatz-Wielandt sets, IEEE Transactions on Automatic Control, 58 (2013), 748–751. doi: 10.1109/TAC.2012.2209270.  Google Scholar

[8]

S. Elaydi and S. Zhang, Stability and periodicity of difference equations with finite delay, Funkcial. Ekvac, 37 (1994), 401-413.   Google Scholar

[9]

A. Frommer and D. B. Szyld, On asynchronous iterations, Journal of Computational and Applied Mathematics, 123 (2000), 201–216. Numerical analysis 2000, Vol. III. Linear algebra. doi: 10.1016/S0377-0427(00)00409-X.  Google Scholar

[10]

A. Hassibi, S. P. Boyd and J. P. How, Control of asynchronous dynamical systems with rate constraints on events, Proceedings of the 38th IEEE Conference on Decision and Control, 1999, 1345–1351. doi: 10.1109/CDC.1999.830133.  Google Scholar

[11]

H. Heaton and Y. Censor, Asynchronous sequential inertial iterations for common fixed points problems with an application to linear systems, Journal of Global Optimization, 74 (2019), 95-119.  doi: 10.1007/s10898-019-00747-4.  Google Scholar

[12]

K. HeliövaaraR. Väisänen and C. Simon, Evolutionary ecology of periodical insects, Trends in Ecology and Evolution, 9 (1994), 475-480.   Google Scholar

[13]

N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, 2008. doi: 10.1137/1.9780898717778.  Google Scholar

[14]

S. Hilger, Analysis on measure chains – a unified approach to continuous and discrete calculus, Results Math, 18 (1990), 18-56.  doi: 10.1007/BF03323153.  Google Scholar

[15]

E. Kaszkurewicz and A. Bhaya, Matrix Diagonal Stability in Systems and Computation, Birkhäuser Boston, 2000. doi: 10.1007/978-1-4612-1346-8.  Google Scholar

[16] W. Kelley and A. Peterson, Difference Equations. An Introduction with Applications, Academic Press, London, 2001.   Google Scholar
[17]

P. Klemperer, Competition when Consumers have Switching Costs: An Overview with Applications to Industrial Organization, Macroeconomics, and International Trade, The Review of Economic Studies, 62 (1995), 515-539.  doi: 10.2307/2298075.  Google Scholar

[18]

A. F. KleptsynM. A. Krasnosel'skiĭN. A. Kuznetsov and V. S. Kozyakin, Desynchronization of linear systems, Mathematics and Computers in Simulation, 26 (1984), 423-431.  doi: 10.1016/0378-4754(84)90106-X.  Google Scholar

[19]

V. Kozyakin, A short introduction to asynchronous systems, In Proceedings of the Sixth International Conference on Difference Equations, 2004,153–165.  Google Scholar

[20]

R. Lagunoff and A. Matsui, Asynchronous choice in repeated coordination games, Econometrica, 65 (1997), 1467-1477.  doi: 10.2307/2171745.  Google Scholar

[21]

C. Lorand and P. Bauer, A factorization approach to the analysis of asynchronous interconnected discrete-time systems with arbitrary clock ratios, In Proceedings of the American Control Conference, 2004,349–354. Google Scholar

[22]

C. Lorand and P. Bauer., Interconnected discrete-time systems with incommensurate clock frequencies, In Proceedings of the IEEE Conference on Decision and Control, 2004,935–940. Google Scholar

[23]

J. Libich and P. Stehlík, Endogenous Monetary Commitment, Economic Letters, 112 (2011), 103-106.  doi: 10.1016/j.econlet.2011.03.030.  Google Scholar

[24]

J. Libich and P. Stehlík, Incorporating rigidity and commitment in the timing structure of macroeconomic games, Economic Modelling, 27 (2010), 767-781.  doi: 10.1016/j.econmod.2010.01.020.  Google Scholar

[25]

H. Lütkepohl, Handbook of Matrices, John Wiley & Sons, Ltd., Chichester, 1996.  Google Scholar

[26]

J. D. Murray, Mathematical Biology II, Springer, 2003.  Google Scholar

[27]

K. Ogata, Discrete-time Control Systems, Prentice Hall Englewood Cliffs, NJ, 1995. Google Scholar

[28]

C. PötzscheS. Siegmund and F. Wirth, A spectral characterization of exponential stability for linear time-invariant systems on time scales, Discrete Contin. Dyn. Syst., 9 (2003), 1223-1241.  doi: 10.3934/dcds.2003.9.1223.  Google Scholar

[29]

R. ShortenF. WirthO. MasonK. Wulff and C. King, Stability criteria for switched and hybrid systems, SIAM Review, 49 (2007), 545-592.  doi: 10.1137/05063516X.  Google Scholar

[30]

W. Shou, C. T. Bergstrom, A. K. Chakraborty and F. K. Skinner, Theory, models and biology, ELife, 4 (2015), e07158. doi: 10.7554/eLife.07158.  Google Scholar

[31]

A. Slavík, Dynamic equations on time scales and generalized ordinary differential equations, J. Math. Anal. Appl., 385 (2012), 534-550.  doi: 10.1016/j.jmaa.2011.06.068.  Google Scholar

[32]

Y. SuA. BhayaE. Kaszkurewicz and V. S. Kozyakin, Further results on convergence of asynchronous linear iterations, Linear Algebra and its Applications, 281 (1998), 11-24.  doi: 10.1016/S0024-3795(98)10030-7.  Google Scholar

[33]

J. Tobin, Money and Finance in the Macroeconomic Process, Journal of Money, Credit and Banking, 14 (1982), 171–204. doi: 10.2307/1991638.  Google Scholar

[34]

Q. Yu and J. Fish, Temporal homogenization of viscoelastic and viscoplastic solids subjected to locally periodic loading, Computational Mechanics, 29 (2002), 199-211.  doi: 10.1007/s00466-002-0334-y.  Google Scholar

Figure 1.  Time scales $ \mathbb{T}_3 $ and $ \mathbb{T}_5 $ of a $ (3,5) $-asynchronous discrete dynamical system (3)
Figure 2.  Time scales related to dynamically equivalent (2, 3)- and (6, 1)-asynchronous discrete dynamical systems from Example 7.3
Table 1.  9 possible forms of the one-step evolution operator $ A(t) $, $ t,\sigma(t)\in \mathbb{T} $ associated with the system (8), see Corollary 2. The pictograms illustrate each quadruple $ (i,j,k,\ell) = \big(1_{ \mathbb{T}_{\mu}}(t), 1_{ \mathbb{T}_{\mu}}(\sigma(t)), 1_{ \mathbb{T}_{\nu}}(t), 1_{ \mathbb{T}_{\nu}}(\sigma(t))\big) $, squares correspond to $ \mathbb{T}_\mu $, circles to $ \mathbb{T}_\nu $, the left symbols to time $ t\in \mathbb{T} $ and the right symbols to $ \sigma(t)\in \mathbb{T} $
[1]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[2]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[3]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[4]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[5]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[6]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[7]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[8]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[9]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[10]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[11]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[12]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[13]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[14]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[15]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[16]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[17]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[18]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[19]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[20]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (79)
  • HTML views (288)
  • Cited by (0)

Other articles
by authors

[Back to Top]