doi: 10.3934/dcdsb.2020155

Flocking of non-identical Cucker-Smale models on general coupling network

1. 

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, ROC

2. 

Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 700, Taiwan, ROC

* Corresponding author: Jonq Juang

Received  July 2019 Revised  December 2019 Published  May 2020

Fund Project: This work is partially supported by the Ministry of Science and Technology of the Republic of China under grant No.\ MOST 107-2115-M-009-011-MY2 and No. MOST 107-2115-M-390-006-MY2

The purpose of the paper is to investigate the flocking behavior of the discrete-time Cucker-Smale(C-S) model under general interaction network topologies with agents having their free-will accelerations. We prove theoretically that if the free-will accelerations of agents are summable, then, for any given initial conditions, the solution achieves flocking with a finite moving speed by suitably choosing the time step as well as the communication rate of the system or the strength of the interaction between agents. In particular, if the communication rate $ \beta $ of the system is subcritical, i.e., $ \beta $ is less than a critical value $ \beta_c $, then flocking holds for any initial conditions regardless of the strength of the interaction between agents. While, if the communication rate is critical ($ \beta = \beta_c $) or supercritical ($ \beta > \beta_c $), then flocking can only be achieved by making the strength of the interaction large enough. We also present some numerical simulations to support our obtained theoretical results.

Citation: Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020155
References:
[1]

S. M. Ahn, H. Choi, S.-Y. Ha and H. Lee, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2010), 103301, 17pp. doi: 10.1063/1.3496895.  Google Scholar

[2]

S. M. AhnH. ChoiS.-Y. Ha and H. Lee, On collision-avoiding initial configurations to Cucker-Smale type flocking models, Commun. Math. Sci., 10 (2012), 625-643.  doi: 10.4310/CMS.2012.v10.n2.a10.  Google Scholar

[3]

S. M. AhnH.-O. BaeS.-Y. HaY. Kim and H. Lim, Application of flocking mechanism to the modeling of stochastic volatility, Math. Models Methods in Appli. Sci., 23 (2013), 1603-1628.  doi: 10.1142/S0218202513500176.  Google Scholar

[4]

P. Antoniou, A. Pitsillides, T. Blackwell and A. Engelbrecht, Employing the flocking behavior of birds for controlling congestion in autonomous decentralized networks, IEEE Congr. Evol. Comp., (2009), 1753–1761. doi: 10.1109/CEC.2009.4983153.  Google Scholar

[5]

J. A. CañizoJ. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.  doi: 10.1142/S0218202511005131.  Google Scholar

[6]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.  doi: 10.1137/090757290.  Google Scholar

[7]

F. Cucker and J.-G. Dong, On the critical exponent for flocks under hierarchical leadership, Math. Models Methods Appl. Sci., 19 (2009), 1391-1404.  doi: 10.1142/S0218202509003851.  Google Scholar

[8]

F. Cucker and J.-G. Dong, Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55 (2010), 1238-1243.  doi: 10.1109/TAC.2010.2042355.  Google Scholar

[9]

F. Cucker and J.-G. Dong, A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124-1129.  doi: 10.1109/TAC.2011.2107113.  Google Scholar

[10]

F. Cucker and J.-G. Dong, On flocks influenced by closest neighbors, Math. Models Methods Appl. Sci., 26 (2016), 2685-2708.  doi: 10.1142/S0218202516500639.  Google Scholar

[11]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[12]

F. Cucker and S. Smale, On the mathematics of emergence, Japan J. Math., 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[13]

F. Cucker and J.-G. Dong, On flocks under switching directed interaction topologies, SIAM J. Math. Anal., 79 (2019), 95-110.  doi: 10.1137/18M116976X.  Google Scholar

[14]

P. Degond and S. Motsch, Macroscopic limit of self-driven particles with orientation interaction, C. R. Math. Acad. Sci. Paris, 345 (2007), 555-560.  doi: 10.1016/j.crma.2007.10.024.  Google Scholar

[15]

P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215.  doi: 10.1142/S0218202508003005.  Google Scholar

[16]

P. Degond and S. Motsch, Large scale dynamics of the persistent turning walker model of fish behavior, J. Stat. Phys., 131 (2008), 989-1021.  doi: 10.1007/s10955-008-9529-8.  Google Scholar

[17]

P. Degond and T. Yang, Diffusion in a continuum model of self-propelled particles with alignment interaction, Math. Models Methods Appl. Sci., 20 (2010), 1459-1490.  doi: 10.1142/S0218202510004659.  Google Scholar

[18]

J.-G. Dong and L. Qiu, Flocking of the Cucker-Smale model on general digraphs, IEEE Trans. Automat. Control, 62 (2017), 5234-5239.  doi: 10.1109/TAC.2016.2631608.  Google Scholar

[19]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.  doi: 10.4310/CMS.2009.v7.n2.a9.  Google Scholar

[20]

S.-Y. HaZ. LiM. Slemrod and X. Xue, Flocking behavior of the Cucker-Smale model under rooted leadership in a large coupling limit, Quart. Appl. Math., 72 (2014), 689-701.  doi: 10.1090/S0033-569X-2014-01350-5.  Google Scholar

[21]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Mod., 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[22]

S.-Y. HaQ. Xiao and X. Zhang, Emergent dynamics of Cucker-Smale particles under the effects of random communication and incompressible fluids, J. Diff. Eq., 264 (2018), 4669-4706.  doi: 10.1016/j.jde.2017.12.020.  Google Scholar

[23]

J. Juang and Y.-H. Liang, Avoiding collisions in Cucker-Smale flocking models under group-hierarchical multi-leadership, SIAM J. Appl. Math., 78 (2018), 531-550.  doi: 10.1137/16M1098401.  Google Scholar

[24]

Z. Li and S.-Y. Ha, On the Cucker-Smale flocking with alternating leaders, Quart. Appl. Math., 73 (2015), 693-709.  doi: 10.1090/qam/1401.  Google Scholar

[25]

Z. LiS.-Y. Ha and and X. Xue, Emergent phenomena in an ensemble of Cucker-Smale particles under joint rooted leadership, Math. Models Methods Appl. Sci., 24 (2014), 1389-1419.  doi: 10.1142/S0218202514500043.  Google Scholar

[26]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.  doi: 10.1137/100791774.  Google Scholar

[27]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with free-will agent, Physica A, 410 (2014), 205-217.  doi: 10.1016/j.physa.2014.05.008.  Google Scholar

[28]

C.-H. Li and S.-Y. Yang, A new discrete Cucker-Smale flocking model under hierarchical leadership, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2587-2599.  doi: 10.3934/dcdsb.2016062.  Google Scholar

[29]

Y. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.  doi: 10.1016/j.jmaa.2014.01.036.  Google Scholar

[30]

J. ParkH. Kim and S.-Y. Ha, Cucker-Smale flocking with inter-particle bonding forces, IEEE Trans. Automat. Control, 55 (2010), 2617-2623.  doi: 10.1109/TAC.2010.2061070.  Google Scholar

[31]

L. PereaP. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space flight formations, J. Guid., Control, and Dyn., 32 (2009), 527-537.  doi: 10.2514/1.36269.  Google Scholar

[32]

B. PiccoliF. Rossi and E. Trélat, Control to flocking of the kinetic Cucker-Smale model, SIAM J. Math. Anal., 47 (2015), 4685-4719.  doi: 10.1137/140996501.  Google Scholar

[33]

Z. Qu, Cooperative Control Of Dynamical Systems, Springer-Verlag London, 2009. doi: 10.1007/978-1-84882-325-9.  Google Scholar

[34]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2008), 694-719.  doi: 10.1137/060673254.  Google Scholar

[35]

J. Toner and Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking, Phys. Rev. E, 58 (1998), 4828-4858.  doi: 10.1103/PhysRevE.58.4828.  Google Scholar

[36]

C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152-174.  doi: 10.1137/S0036139903437424.  Google Scholar

[37]

T. VicsekA. CzirókE. Ben-JacobI. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[38]

T. Vicsek and A. Zafeiris, Collective motion, Phys. Rep., 517 (2012), 71-140.  doi: 10.1016/j.physrep.2012.03.004.  Google Scholar

[39]

C.-W. Wu, Synchronization in Complex Networks of Nonlinear Dynamical Systems, Singapore: World Scientific, 2007, 88–89. doi: 10.1142/6570.  Google Scholar

show all references

References:
[1]

S. M. Ahn, H. Choi, S.-Y. Ha and H. Lee, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2010), 103301, 17pp. doi: 10.1063/1.3496895.  Google Scholar

[2]

S. M. AhnH. ChoiS.-Y. Ha and H. Lee, On collision-avoiding initial configurations to Cucker-Smale type flocking models, Commun. Math. Sci., 10 (2012), 625-643.  doi: 10.4310/CMS.2012.v10.n2.a10.  Google Scholar

[3]

S. M. AhnH.-O. BaeS.-Y. HaY. Kim and H. Lim, Application of flocking mechanism to the modeling of stochastic volatility, Math. Models Methods in Appli. Sci., 23 (2013), 1603-1628.  doi: 10.1142/S0218202513500176.  Google Scholar

[4]

P. Antoniou, A. Pitsillides, T. Blackwell and A. Engelbrecht, Employing the flocking behavior of birds for controlling congestion in autonomous decentralized networks, IEEE Congr. Evol. Comp., (2009), 1753–1761. doi: 10.1109/CEC.2009.4983153.  Google Scholar

[5]

J. A. CañizoJ. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.  doi: 10.1142/S0218202511005131.  Google Scholar

[6]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.  doi: 10.1137/090757290.  Google Scholar

[7]

F. Cucker and J.-G. Dong, On the critical exponent for flocks under hierarchical leadership, Math. Models Methods Appl. Sci., 19 (2009), 1391-1404.  doi: 10.1142/S0218202509003851.  Google Scholar

[8]

F. Cucker and J.-G. Dong, Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55 (2010), 1238-1243.  doi: 10.1109/TAC.2010.2042355.  Google Scholar

[9]

F. Cucker and J.-G. Dong, A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124-1129.  doi: 10.1109/TAC.2011.2107113.  Google Scholar

[10]

F. Cucker and J.-G. Dong, On flocks influenced by closest neighbors, Math. Models Methods Appl. Sci., 26 (2016), 2685-2708.  doi: 10.1142/S0218202516500639.  Google Scholar

[11]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[12]

F. Cucker and S. Smale, On the mathematics of emergence, Japan J. Math., 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[13]

F. Cucker and J.-G. Dong, On flocks under switching directed interaction topologies, SIAM J. Math. Anal., 79 (2019), 95-110.  doi: 10.1137/18M116976X.  Google Scholar

[14]

P. Degond and S. Motsch, Macroscopic limit of self-driven particles with orientation interaction, C. R. Math. Acad. Sci. Paris, 345 (2007), 555-560.  doi: 10.1016/j.crma.2007.10.024.  Google Scholar

[15]

P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215.  doi: 10.1142/S0218202508003005.  Google Scholar

[16]

P. Degond and S. Motsch, Large scale dynamics of the persistent turning walker model of fish behavior, J. Stat. Phys., 131 (2008), 989-1021.  doi: 10.1007/s10955-008-9529-8.  Google Scholar

[17]

P. Degond and T. Yang, Diffusion in a continuum model of self-propelled particles with alignment interaction, Math. Models Methods Appl. Sci., 20 (2010), 1459-1490.  doi: 10.1142/S0218202510004659.  Google Scholar

[18]

J.-G. Dong and L. Qiu, Flocking of the Cucker-Smale model on general digraphs, IEEE Trans. Automat. Control, 62 (2017), 5234-5239.  doi: 10.1109/TAC.2016.2631608.  Google Scholar

[19]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.  doi: 10.4310/CMS.2009.v7.n2.a9.  Google Scholar

[20]

S.-Y. HaZ. LiM. Slemrod and X. Xue, Flocking behavior of the Cucker-Smale model under rooted leadership in a large coupling limit, Quart. Appl. Math., 72 (2014), 689-701.  doi: 10.1090/S0033-569X-2014-01350-5.  Google Scholar

[21]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Mod., 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[22]

S.-Y. HaQ. Xiao and X. Zhang, Emergent dynamics of Cucker-Smale particles under the effects of random communication and incompressible fluids, J. Diff. Eq., 264 (2018), 4669-4706.  doi: 10.1016/j.jde.2017.12.020.  Google Scholar

[23]

J. Juang and Y.-H. Liang, Avoiding collisions in Cucker-Smale flocking models under group-hierarchical multi-leadership, SIAM J. Appl. Math., 78 (2018), 531-550.  doi: 10.1137/16M1098401.  Google Scholar

[24]

Z. Li and S.-Y. Ha, On the Cucker-Smale flocking with alternating leaders, Quart. Appl. Math., 73 (2015), 693-709.  doi: 10.1090/qam/1401.  Google Scholar

[25]

Z. LiS.-Y. Ha and and X. Xue, Emergent phenomena in an ensemble of Cucker-Smale particles under joint rooted leadership, Math. Models Methods Appl. Sci., 24 (2014), 1389-1419.  doi: 10.1142/S0218202514500043.  Google Scholar

[26]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.  doi: 10.1137/100791774.  Google Scholar

[27]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with free-will agent, Physica A, 410 (2014), 205-217.  doi: 10.1016/j.physa.2014.05.008.  Google Scholar

[28]

C.-H. Li and S.-Y. Yang, A new discrete Cucker-Smale flocking model under hierarchical leadership, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2587-2599.  doi: 10.3934/dcdsb.2016062.  Google Scholar

[29]

Y. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.  doi: 10.1016/j.jmaa.2014.01.036.  Google Scholar

[30]

J. ParkH. Kim and S.-Y. Ha, Cucker-Smale flocking with inter-particle bonding forces, IEEE Trans. Automat. Control, 55 (2010), 2617-2623.  doi: 10.1109/TAC.2010.2061070.  Google Scholar

[31]

L. PereaP. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space flight formations, J. Guid., Control, and Dyn., 32 (2009), 527-537.  doi: 10.2514/1.36269.  Google Scholar

[32]

B. PiccoliF. Rossi and E. Trélat, Control to flocking of the kinetic Cucker-Smale model, SIAM J. Math. Anal., 47 (2015), 4685-4719.  doi: 10.1137/140996501.  Google Scholar

[33]

Z. Qu, Cooperative Control Of Dynamical Systems, Springer-Verlag London, 2009. doi: 10.1007/978-1-84882-325-9.  Google Scholar

[34]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2008), 694-719.  doi: 10.1137/060673254.  Google Scholar

[35]

J. Toner and Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking, Phys. Rev. E, 58 (1998), 4828-4858.  doi: 10.1103/PhysRevE.58.4828.  Google Scholar

[36]

C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152-174.  doi: 10.1137/S0036139903437424.  Google Scholar

[37]

T. VicsekA. CzirókE. Ben-JacobI. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[38]

T. Vicsek and A. Zafeiris, Collective motion, Phys. Rep., 517 (2012), 71-140.  doi: 10.1016/j.physrep.2012.03.004.  Google Scholar

[39]

C.-W. Wu, Synchronization in Complex Networks of Nonlinear Dynamical Systems, Singapore: World Scientific, 2007, 88–89. doi: 10.1142/6570.  Google Scholar

Figure 1.  The network consisting of $ 9 $ vertices has a spanning tree. For this network, $ \mathcal{R} = \{1,2,3\} $, $ n = 9 $, $ \ell = 3 $, $ h = 3 $ and $ r = 2 $
Figure 2.  The graph of $ G $
Figure 3.  (Subcritical) Numerical simulation for model Eq. (4) with the network given in Fig. 1. This simulation result shows the solution achieves flocking. Here parameters in Eq. (4) are chosen as $ \beta = 1/10 $, $ \kappa = 10 $ and $ \varepsilon = 0.001 $. The initial conditions are randomly chosen and they satisfy $ a\approx 0.8932 $, $ b\approx 0.8104 $. Here $ a,b $ are defined in (20a)
Figure 4.  (Critical) Numerical simulation for model Eq. (4) with the network given in Fig. 1. This simulation result shows the solution achieves flocking. Here parameters in Eq. (4) are chosen as $ \beta = 1/6 $, $ \kappa = 120 $ and $ \varepsilon = 0.001 $. The initial conditions are randomly chosen and they satisfy $ a\approx 0.8932 $, $ b\approx 0.8104 $. Here $ a,b $ are defined in (20a)
Figure 5.  (Supercritical) Numerical simulation for model Eq. (4) with the network given in Fig. 1. This simulation result shows the solution achieves flocking. Here parameters in Eq. (4) are chosen as $ \beta = 1/3 $, $ \kappa = 200 $ and $ \varepsilon = 0.001 $. The initial conditions are randomly chosen and they satisfy $ a\approx 0.8932 $, $ b\approx 0.8104 $. Here $ a,b $ are defined in (20a)
Figure 6.  Numerical simulation for model Eq. (4) under the network provided in Fig. 1. This simulation result shows the solution does not achieve flocking. Here parameters in Eq. (4) are chosen as $ \beta = 1 $ (supercritical), $ \kappa = 0.1 $ and $ \varepsilon = 0.001 $. The initial conditions are randomly chosen and they satisfy $ a\approx 0.2872 $, $ b\approx 0.2850 $. Here $ a,b $ are defined in (20a). Such set of parameters and initial conditions do not satisfy the sufficient condition (23)
[1]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[2]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[3]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[4]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[5]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[6]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[7]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[8]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[9]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[10]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[11]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[12]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[13]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[14]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[15]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[16]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[17]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[18]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[19]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[20]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (74)
  • HTML views (242)
  • Cited by (0)

[Back to Top]