\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global analysis of a model of competition in the chemostat with internal inhibitor

  • * Corresponding author: Mohamed Dellal

    * Corresponding author: Mohamed Dellal 

The authors are supported by the "Directorate General for Scientific Research and Technological Development, Ministry of Higher Education and Scientific Research, Algeria" and the Euro-Mediterranean research network TREASURE (http://www.inra.fr/treasure)

Abstract Full Text(HTML) Figure(7) / Table(5) Related Papers Cited by
  • A model of two microbial species in a chemostat competing for a single resource in the presence of an internal inhibitor is considered. The model is a four-dimensional system of ordinary differential equations. Using general growth rate functions of the species, we give a complete analysis for the existence and local stability of all steady states. We describe the behavior of the system with respect to the operating parameters represented by the dilution rate and the input concentrations of the substrate. The operating diagram has the operating parameters as its coordinates and the various regions defined in it correspond to qualitatively different asymptotic behavior: washout, competitive exclusion of one species, coexistence of the species, bistability, multiplicity of positive steady states. This bifurcation diagram which determines the effect of the operating parameters, is very useful to understand the model from both the mathematical and biological points of view, and is often constructed in the mathematical and biological literature.

    Mathematics Subject Classification: Primary: 34C23, 34D20; Secondary: 92B05, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Projection of equilibria $ E_0 $, $ E_1 $, $ E_2 $ and $ E_c $ in the plane $ (S,p) $ and existence and stability conditions of these points. Where stable equilibrium points are denoted by filled circles and unstable equilibrium points are denoted by empty circles

    Figure 2.  The existence of multiple positive equilibria when the condition (20) $ \rm(a) $: is not satisfied; $ \rm(b) $: is satisfied

    Figure 3.  Case $ n = 3 $: Local stability of $ E_1 $, $ E_2 $, $ E_c^2 $ and instability of $ E_c^1 $, $ E_c^2 $, $ E_0 $

    Figure 5.  The operating diagram of the system (1) where $ \mu_i $ are given by (2) and the curves $ \Gamma_i^c $ do not intersect. $ \rm(a) $: The occurrence of the bistability region $ \mathcal{J}_7 $, where the coexistence region $ \mathcal{J}_6 $ does not exist. $ \rm(b) $: The occurrence of the coexistence region $ \mathcal{J}_6 $. The biological parameters used to construct Figs. Figs. 5(a, b) are exactly the same except that the values of $ \alpha_i $ have been inverted

    Figure 6.  The operating diagram of the system (1) where $ \mu_i $ are given by (2) and the curves $ \Gamma_i^c $ intersect. The pictures show the occurrence of the bistability region $ \mathcal{J}_8 $ of $ E_2 $ and $ E_c^i $, The biological parameters used to construct Figs. Figs. 6(a, b) are exactly the same except that the values of $ \alpha_i $ have been inverted

    Figure 4.  Illustrative graph of $ \Gamma_i^c $, $ i = 1,2 $ defined by (33), showing the relative positions of the roots $ S_c^1(\!D\!) $ and $ S_c^2(\!D\!) $ of (39) with respect to the root $ S_i(\!D\!,\!S^0\!) $ of (38). Region Ⅰ: $ S_i<S_c^1<S_c^2 $; region Ⅱ: $ S_c^1<S_c^2<S_i $; region Ⅲ : $ S_c^1<S_i<S_c^2 $

    Figure 7.  The trajectories of the reduced model (28) where $ (S^0,D) $ are chosen in regions of Fig. 6(a). (a): Bistability of $ E_1 $ and $ E_2 $ when $ (S^0,D) = (0.1,0.9)\in\mathcal{J}_7^a $. (b): Bistability of $ E_c^1 $ and $ E_2 $ when $ (S^0,D) = (0.05,1.15)\in\mathcal{J}_8^a $. (c): Global stability of $ E_c^1 $ when $ (S^0,D) = (0.02,1.15)\in\mathcal{J}_6^a $

    Table 1.  Existence and local asymptotic stability of equilibria of system (1)

    Equilibria Existence Local exponential stability
    $ E_0 $ Always $ \lambda_1>S^0 $ and $ \lambda_2>S^0 $
    $ E_1 $ $ \lambda_1<S^0 $ $ F_1(S_1)>F_2(S_1) $
    $ E_2 $ $ \lambda_2<S^0 $ $ F_2(S_2)>F_1(S_2) $
    $ E_{c} $ (23) has a solution $ (\alpha_1\gamma_1-\alpha_2\gamma_2)[F'_2(S_c)-F'_1(S_c)]>0 $
     | Show Table
    DownLoad: CSV

    Table 2.  Parameter values used in Section 5 where $ \mu_i $ are given by (2)

    Parameters $ m_1 $ $ m_2 $ $ a_1 $ $ a_2 $ $ K_1 $ $ K_2 $ $ \alpha_1 $ $ \alpha_2 $ Figures
    Units $ h^{-1} $ $ h^{-1} $ $ gl^{-1} $ $ gl^{-1} $ $ gl^{-1} $ $ gl^{-1} $
    Case (a) 1.0 2.0 0.01 0.04 0.01 0.006 0.1 4.0 5(a)
    Case (b) 1.0 2.0 0.01 0.04 0.01 0.006 4.0 0.1 5(b)
    Case (c) 2.0 9.0 0.006 0.04 0.005 0.001 0.005 0.4 6(a), 7
    Case (d) 2.0 9.0 0.006 0.04 0.005 0.001 0.4 0.005 6(b)
     | Show Table
    DownLoad: CSV

    Table 3.  Existence and stability of equilibria in the regions of the operating diagrams of Fig. 5, when the curves $ \Gamma_i^c $ do not intersect. The letter S (resp. U) means stable (resp. unstable) and empty if that equilibrium does not exist

    Region The relative positions of $ S_i $ and $ S_c^i $ $ E_0 $ $ E_1 $ $ E_2 $ $ E_{c}^1 $ $ E_{c}^2 $
    $ (S^0,D)\in\mathcal J_1 $ $ S_1 $ and $ S_2 $ do not exist S
    $ (S^0,D)\in\mathcal J_2 $ $ S_1 $ does not exist U S
    $ (S^0,D)\in\mathcal J_3 $ $ S_c^1<S_c^2<S_i, i=1,2 $ $ ^{**} $ U U S
    $ (S^0,D)\in\mathcal J_4 $ $ S_c^1<S_i<S_c^2, i=1,2 $ U S U
    $ (S^0,D)\in\mathcal J_5 $ $ S_2 $ does not exist U S
    $ (S^0,D)\in\mathcal J_6 $ $ S_c^1<S_2<S_c^2<S_1 $ U U U S
    $ (S^0,D)\in\mathcal J_7 $ $ S_c^1<S_1<S_c^2<S_2 $ U S S U
    **When Sc1 and Sc2 do not exist, the condition reduces to Si, i = 1, 2 exist.
     | Show Table
    DownLoad: CSV

    Table 4.  Existence and stability of equilibria in the regions of the operating diagrams of Fig. 6, when the curves $ \Gamma_i^c $ intersect

    Region The relative positions of $ S_i $ and $ S_c^i $ $ E_0 $ $ E_1 $ $ E_2 $ $ E_{c}^1 $ $ E_{c}^2 $
    $ (S^0,D)\in\mathcal J_1 $ $ S_1 $ and $ S_2 $ do not exist S
    $ (S^0,D)\in\mathcal J_2 $ $ S_1 $ does not exist U S
    $ (S^0,D)\in\mathcal J_3 $ $ S_i<S_c^1<S_c^2, i=1,2 $ $ ^{**} $ U U S
    $ (S^0,D)\in\mathcal J_4 $ $ S_c^1<S_i<S_c^2, i=1,2 $ U S U
    $ (S^0,D)\in\mathcal J_5 $ $ S_2 $ does not exist U S
    $ (S^0,D)\in\mathcal J_6^a $ $ S_1<S_c^1<S_2<S_c^2 $ U U U S
    $ (S^0,D)\in\mathcal J_7^a $ $ S_c^1<S_1<S_c^2<S_2 $ U S S U
    $ (S^0,D)\in\mathcal J_8^a $ $ S_1<S_c^1<S_c^2<S_2 $ U U S S U
    $ (S^0,D)\in\mathcal J_6^b $ $ S_c^1<S_2<S_c^2<S_1 $ U U U S
    $ (S^0,D)\in\mathcal J_7^b $ $ S_2<S_c^1<S_1<S_c^2 $ U S S U
    $ (S^0,D)\in\mathcal J_8^b $ $ S_2<S_c^1<S_c^2<S_1 $ U U S U S
    **When Sc1 and Sc2 do not exist, the condition reduces to Si, i = 1, 2 exist.
     | Show Table
    DownLoad: CSV

    Table 5.  Parameter values of $ S_i $ and $ S_c^i $ used in Fig.7

    $ (S^0,D) $ Regions $ S_1 $ $ S_2 $ $ S_c^1 $ $ S_c^2 $ Figures
    $ (0.1,0.9) $ $ \mathcal{J}_7^a $ 0.006 0.085 0.005 0.064 7(a)
    $ (0.05,1.15) $ $ \mathcal{J}_8^a $ 0.009 0.042 0.012 0.025 7(b)
    $ (0.02,1.15) $ $ \mathcal{J}_6^a $ 0.008 0.017 0.012 0.025 7(c)
     | Show Table
    DownLoad: CSV
  • [1] N. AbdellatifR. Fekih-Salem and T. Sari, Competition for a single resource and coexistence of several species in the chemostat, Mathematical Biosciences and Engineering, 13 (2016), 631-652.  doi: 10.3934/mbe.2016012.
    [2] B. Bar and T. Sari, The operating diagram for a model of competition in a chemostat with an external lethal inhibitor, Discrete and Continuous Dynamical Systems–B, in press.
    [3] J. P. Braselton and P. Waltman, A competition model with dynamically allocated inhibitor production, Mathematical Biosciences, 173 (2001), 55-84.  doi: 10.1016/S0025-5564(01)00078-5.
    [4] G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient uptake, SIAM Journal on Applied Mathematics, 45 (1985), 138-151.  doi: 10.1137/0145006.
    [5] M. J. De Freitas and A. G. Fredrickson, Inhibition as a factor in the maintenance of the diversity of microbial ecosystems, Journal of General Microbiology, 106 (1978), 307-320.  doi: 10.1099/00221287-106-2-307.
    [6] M. DellalM. Lakrib and T. Sari, The operating diagram of a model of two competitors in a chemostat with an external inhibitor, Mathematical Biosciences, 302 (2018), 27-45.  doi: 10.1016/j.mbs.2018.05.004.
    [7] P. De LeenheerB. Li and H. L. Smith, Competition in the chemostat: Some remarks, Canadian Applied Mathematics Quarterly, 11 (2003), 229-248. 
    [8] H. FgaierM. KalmokoffT. Ells and H. J. Eberl, An allelopathy based model for the Listeria overgrowth phenomenon, Mathematical Biosciences, 247 (2014), 13-26.  doi: 10.1016/j.mbs.2013.10.008.
    [9] S. R. Hansen and S. P. Hubbell, Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes, Science, 207 (1980), 1491-1493.  doi: 10.1126/science.6767274.
    [10] G. Hardin, The competitive exclusion principle, Science, 131 (1960), 1292-1297.  doi: 10.1126/science.131.3409.1292.
    [11] J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganism Cultures, Wiley-ISTE, 2017.
    [12] P. A. Hoskisson and G. Hobbs, Continuous culture - making a comeback?, Microbiology, 151 (2005), 3153-3159.  doi: 10.1099/mic.0.27924-0.
    [13] S. B. Hsu, Limiting behaviour for competing species, SIAM Journal on Applied Mathematics, 34 (1978), 760-763.  doi: 10.1137/0134064.
    [14] S. B. HsuS. P. Hubbell and P. Waltman, A mathematical model for single nutrient competition in continuous cultures of micro-organisms, SIAM Journal on Applied Mathematics, 32 (1977), 366-383.  doi: 10.1137/0132030.
    [15] S. B. HsuY. S. Li and P. Waltman, Competition in the Presence of a Lethal External Inhibitor, Mathematical Biosciences, 167 (2000), 177-199.  doi: 10.1016/S0025-5564(00)00030-4.
    [16] S. B. Hsu and P. Waltman, Analysis of a model of two competitors in a chemostat with an external inhibitor, SIAM Journal on Applied Mathematics, 52 (1992), 528-540.  doi: 10.1137/0152029.
    [17] S. B. Hsu and P. Waltman, Competition in the chemostat when one competitor produces a toxin, Japan Journal of Industrial and Applied Mathematics, 15 (1998), 471-490.  doi: 10.1007/BF03167323.
    [18] S. B. Hsu and P. Waltman, A survey of mathematical models of competition with an inhibitor, Mathematical Biosciences, 187 (2004), 53-91.  doi: 10.1016/j.mbs.2003.07.004.
    [19] R. E. Lenski and S. Hattingh, Coexistence of two competitors on one resource and one inhibitor: A chemostat model based on bacteria and antibiotics, Journal of Theoretical Biology, 122 (1986), 83-93.  doi: 10.1016/S0022-5193(86)80226-0.
    [20] B. Li, Global asymptotic behavior of the chemostat: General response functions and different removal rates, SIAM Journal on Applied Mathematics, 59 (1998), 411-422.  doi: 10.1137/S003613999631100X.
    [21] J. Monod, La technique de culture continue. Théorie et applications, Selected Papers in Molecular Biology by Jacques Monod, (1978), 184–204. doi: 10.1016/B978-0-12-460482-7.50023-3.
    [22] J. Monod, Recherches Sur la Croissance Des Cultures Bacteriennes, Hermann, Paris, 1958.
    [23] S. Pavlou, Computing operating diagrams of bioreactors, Journal of Biotechnology, 71 (1999), 7-16.  doi: 10.1016/S0168-1656(99)00011-5.
    [24] T. Sari, Competitive exclusion for chemostat equations with variable yields, Acta Applicandae Mathematicae, 123 (2013), 201-219.  doi: 10.1007/s10440-012-9761-8.
    [25] T. Sari and F. Mazenc, Global dynamics of the chemostat with different removal rates and variable yields, Mathematical Biosciences and Engineering, 8 (2011), 827-840.  doi: 10.3934/mbe.2011.8.827.
    [26] H. L. Smith and  P. WaltmanThe Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, 1995.  doi: 10.1017/CBO9780511530043.
    [27] H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, Journal of Mathematical Biology, 30 (1992), 755-763.  doi: 10.1007/BF00173267.
    [28] M. J. WadeJ. HarmandB. BenyahiaT. BouchezS. ChaillouB. CloezJ. GodonB. Moussa BoudjemaaA. RapaportT. SariR. Arditi and C. Lobry, Perspectives in mathematical modelling for microbial ecology, Ecological Modelling, 321 (2016), 64-74.  doi: 10.1016/j.ecolmodel.2015.11.002.
    [29] M. Weedermann, Analysis of a model for the effects of an external toxin on anaerobic digestion, Mathematical Biosciences and Engineering, 9 (2012), 445-459.  doi: 10.3934/mbe.2012.9.445.
    [30] G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates, SIAM Journal on Applied Mathematics, 52 (1992), 222-233.  doi: 10.1137/0152012.
  • 加载中

Figures(7)

Tables(5)

SHARE

Article Metrics

HTML views(1015) PDF downloads(278) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return