[1]
|
N. Abdellatif, R. Fekih-Salem and T. Sari, Competition for a single resource and coexistence of several species in the chemostat, Mathematical Biosciences and Engineering, 13 (2016), 631-652.
doi: 10.3934/mbe.2016012.
|
[2]
|
B. Bar and T. Sari, The operating diagram for a model of competition in a chemostat with an external lethal inhibitor, Discrete and Continuous Dynamical Systems–B, in press.
|
[3]
|
J. P. Braselton and P. Waltman, A competition model with dynamically allocated inhibitor production, Mathematical Biosciences, 173 (2001), 55-84.
doi: 10.1016/S0025-5564(01)00078-5.
|
[4]
|
G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient uptake, SIAM Journal on Applied Mathematics, 45 (1985), 138-151.
doi: 10.1137/0145006.
|
[5]
|
M. J. De Freitas and A. G. Fredrickson, Inhibition as a factor in the maintenance of the diversity of microbial ecosystems, Journal of General Microbiology, 106 (1978), 307-320.
doi: 10.1099/00221287-106-2-307.
|
[6]
|
M. Dellal, M. Lakrib and T. Sari, The operating diagram of a model of two competitors in a chemostat with an external inhibitor, Mathematical Biosciences, 302 (2018), 27-45.
doi: 10.1016/j.mbs.2018.05.004.
|
[7]
|
P. De Leenheer, B. Li and H. L. Smith, Competition in the chemostat: Some remarks, Canadian Applied Mathematics Quarterly, 11 (2003), 229-248.
|
[8]
|
H. Fgaier, M. Kalmokoff, T. Ells and H. J. Eberl, An allelopathy based model for the Listeria overgrowth phenomenon, Mathematical Biosciences, 247 (2014), 13-26.
doi: 10.1016/j.mbs.2013.10.008.
|
[9]
|
S. R. Hansen and S. P. Hubbell, Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes, Science, 207 (1980), 1491-1493.
doi: 10.1126/science.6767274.
|
[10]
|
G. Hardin, The competitive exclusion principle, Science, 131 (1960), 1292-1297.
doi: 10.1126/science.131.3409.1292.
|
[11]
|
J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganism Cultures, Wiley-ISTE, 2017.
|
[12]
|
P. A. Hoskisson and G. Hobbs, Continuous culture - making a comeback?, Microbiology, 151 (2005), 3153-3159.
doi: 10.1099/mic.0.27924-0.
|
[13]
|
S. B. Hsu, Limiting behaviour for competing species, SIAM Journal on Applied Mathematics, 34 (1978), 760-763.
doi: 10.1137/0134064.
|
[14]
|
S. B. Hsu, S. P. Hubbell and P. Waltman, A mathematical model for single nutrient competition in continuous cultures of micro-organisms, SIAM Journal on Applied Mathematics, 32 (1977), 366-383.
doi: 10.1137/0132030.
|
[15]
|
S. B. Hsu, Y. S. Li and P. Waltman, Competition in the Presence of a Lethal External Inhibitor, Mathematical Biosciences, 167 (2000), 177-199.
doi: 10.1016/S0025-5564(00)00030-4.
|
[16]
|
S. B. Hsu and P. Waltman, Analysis of a model of two competitors in a chemostat with an external inhibitor, SIAM Journal on Applied Mathematics, 52 (1992), 528-540.
doi: 10.1137/0152029.
|
[17]
|
S. B. Hsu and P. Waltman, Competition in the chemostat when one competitor produces a toxin, Japan Journal of Industrial and Applied Mathematics, 15 (1998), 471-490.
doi: 10.1007/BF03167323.
|
[18]
|
S. B. Hsu and P. Waltman, A survey of mathematical models of competition with an inhibitor, Mathematical Biosciences, 187 (2004), 53-91.
doi: 10.1016/j.mbs.2003.07.004.
|
[19]
|
R. E. Lenski and S. Hattingh, Coexistence of two competitors on one resource and one inhibitor: A chemostat model based on bacteria and antibiotics, Journal of Theoretical Biology, 122 (1986), 83-93.
doi: 10.1016/S0022-5193(86)80226-0.
|
[20]
|
B. Li, Global asymptotic behavior of the chemostat: General response functions and different removal rates, SIAM Journal on Applied Mathematics, 59 (1998), 411-422.
doi: 10.1137/S003613999631100X.
|
[21]
|
J. Monod, La technique de culture continue. Théorie et applications, Selected Papers in Molecular Biology by Jacques Monod, (1978), 184–204.
doi: 10.1016/B978-0-12-460482-7.50023-3.
|
[22]
|
J. Monod, Recherches Sur la Croissance Des Cultures Bacteriennes, Hermann, Paris, 1958.
|
[23]
|
S. Pavlou, Computing operating diagrams of bioreactors, Journal of Biotechnology, 71 (1999), 7-16.
doi: 10.1016/S0168-1656(99)00011-5.
|
[24]
|
T. Sari, Competitive exclusion for chemostat equations with variable yields, Acta Applicandae Mathematicae, 123 (2013), 201-219.
doi: 10.1007/s10440-012-9761-8.
|
[25]
|
T. Sari and F. Mazenc, Global dynamics of the chemostat with different removal rates and variable yields, Mathematical Biosciences and Engineering, 8 (2011), 827-840.
doi: 10.3934/mbe.2011.8.827.
|
[26]
|
H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, 1995.
doi: 10.1017/CBO9780511530043.
|
[27]
|
H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, Journal of Mathematical Biology, 30 (1992), 755-763.
doi: 10.1007/BF00173267.
|
[28]
|
M. J. Wade, J. Harmand, B. Benyahia, T. Bouchez, S. Chaillou, B. Cloez, J. Godon, B. Moussa Boudjemaa, A. Rapaport, T. Sari, R. Arditi and C. Lobry, Perspectives in mathematical modelling for microbial ecology, Ecological Modelling, 321 (2016), 64-74.
doi: 10.1016/j.ecolmodel.2015.11.002.
|
[29]
|
M. Weedermann, Analysis of a model for the effects of an external toxin on anaerobic digestion, Mathematical Biosciences and Engineering, 9 (2012), 445-459.
doi: 10.3934/mbe.2012.9.445.
|
[30]
|
G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates, SIAM Journal on Applied Mathematics, 52 (1992), 222-233.
doi: 10.1137/0152012.
|