A reaction-diffusion predator-prey system with prey-taxis and predator-taxis describes the spatial interaction and random movement of predator and prey species, as well as the spatial movement of predators pursuing prey and prey evading predators. The spatial pattern formation induced by the prey-taxis and predator-taxis is characterized by the Turing type linear instability of homogeneous state and bifurcation theory. It is shown that both attractive prey-taxis and repulsive predator-taxis compress the spatial patterns, while repulsive prey-taxis and attractive predator-taxis help to generate spatial patterns. Our results are applied to the Holling-Tanner predator-prey model to demonstrate the pattern formation mechanism.
Citation: |
Figure 1. The stable region/unstable region of equilibrium $ (u^*, v^*) $ of system (1) in $ \xi-\eta $ parameter plane. Here $ f, g $ and other parameters are taken from (25) in Section 4. (Left): $ d = 0.06 $, $ (0, 0)\in S $; (Right): $ d = 0.01 $, $ (0, 0)\not\in S $. The thick solid curve is $ f_u+dg_v+\eta v^*f_v-\xi u^*g_u-2\sqrt{d+\xi\eta u^*v^*}\sqrt{Det J} = 0 $, the thin solid curve is $ d+\xi\eta u^*v^* = 0 $ in both panels
Figure 2. (Left): $ D(\eta, \xi, p) = 0 $ in $ \xi-p $ plane for fixed $ \eta $; (right): there are two bifurcation value $ \xi_S^2 $(corresponding to $ \lambda_2 = 4 $) and $ \xi_S^3 $(corresponding to $ \lambda_3 = 9 $), here $ f, g $ and other parameters are taken from (25) in Section 4 with $ \eta = 0.02 $, $ d = 0.01 $, $ \Omega = (0, \pi) $
Figure 5. Turing pattern in (25) is stabilized when $ \xi = 0.9 $ and $ \eta = 0.4 $, and the same initial value $ (0.7+0.1\sin(2x), 0.7+0.2\sin(3x)) $. Other parameters are also same as in Figure 3
Figure 6. Instability induced by taxis in (25) when $ \xi = -0.5 $ and $ \eta = -0.4 $ and initial condition $ (0.7+0.1\sin(2x), 0.7+0.2\sin(3x)) $. Other parameters are same as in Figure 4
Figure 7. The amplitude change of non-constant equilibrium solutions of (25) for different $ (\xi, \eta) $. Here the value is the difference of maximum and minimum values of the non-constant equilibrium solution; the initial value is $ (0.7+0.1\sin(2x), 0.7+0.2\sin(3x)) $ and other parameters are the same as Figure 3
[1] |
B. Ainseba, M. Bendahmane and A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Anal. Real World Appl., 9 (2008), 2086-2105.
![]() |
[2] |
H. Amann, Dynamic theory of quasilinear parabolic systems. Ⅲ. Global existence, Math. Z., 202 (1989), 219-250.
doi: 10.1007/BF01215256.![]() ![]() ![]() |
[3] |
H. Amann, Dynamic theory of quasilinear parabolic equations. Ⅱ. Reaction-diffusion systems, Differ. Integral Equ., 3 (1990), 13-75.
![]() ![]() |
[4] |
M. Baurmann, T. Gross and U. Feudel, Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations, J. Theoret. Biol., 245 (2007), 220-229.
doi: 10.1016/j.jtbi.2006.09.036.![]() ![]() ![]() |
[5] |
S. S. Chen and J. P. Shi, Global stability in a diffusive Holling-Tanner predator-prey model, Appl. Math. Lett., 25 (2012), 614-618.
doi: 10.1016/j.aml.2011.09.070.![]() ![]() ![]() |
[6] |
S. S. Chen, J. P. Shi and J. J. Wei, Global stability and Hopf bifurcation in a delayed diffusive Leslie-Gower predator-prey system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012), 1250061, 11 pp.
doi: 10.1142/S0218127412500617.![]() ![]() ![]() |
[7] |
C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst., 34 (2014), 1701-1745.
doi: 10.3934/dcds.2014.34.1701.![]() ![]() ![]() |
[8] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2.![]() ![]() ![]() |
[9] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180.
doi: 10.1007/BF00282325.![]() ![]() ![]() |
[10] |
P. Deuring, An initial-boundary value problem for a certain density-dependent diffusion system, Math. Z., 194 (1987), 375-396.
doi: 10.1007/BF01162244.![]() ![]() ![]() |
[11] |
Y. H. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Amer. Math. Soc., 359 (2007), 4557-4593.
doi: 10.1090/S0002-9947-07-04262-6.![]() ![]() ![]() |
[12] |
S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763-783.
doi: 10.1137/S0036139993253201.![]() ![]() ![]() |
[13] |
S.-B. Hsu and T.-W. Hwang, Uniqueness of limit cycles for a predator-prey system of Holling and Leslie type, Canad. Appl. Math. Quart., 6 (1998), 91-117.
![]() ![]() |
[14] |
H.-Y. Jin and Z. A. Wang, Global stability of prey-taxis systems, J. Differential Equations, 262 (2017), 1257-1290.
doi: 10.1016/j.jde.2016.10.010.![]() ![]() ![]() |
[15] |
J. Y. Jin, J. P. Shi, J. J. Wei and F. Q. Yi, Bifurcations of patterned solutions in the diffusive Lengyel-Epstein system of CIMA chemical reactions, Rocky Mountain J. Math., 43 (2013), 1637-1674.
doi: 10.1216/RMJ-2013-43-5-1637.![]() ![]() ![]() |
[16] |
P. Kareiva and G. T. Odell, Swarms of predators exhibit " preytaxis" if individual predators use area-restricted search, Am. Nat., 130 (1987), 233-270.
![]() |
[17] |
J. M. Lee, T. Hillen and M. A. Lewis, Pattern formation in prey-taxis systems, J. Biol. Dyn., 3 (2009), 551-573.
doi: 10.1080/17513750802716112.![]() ![]() ![]() |
[18] |
X. Li, W. H. Jiang and J. P. Shi, Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA J. Appl. Math., 78 (2013), 287-306.
doi: 10.1093/imamat/hxr050.![]() ![]() ![]() |
[19] |
P. Liu, J. P. Shi and Z.-A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2597-2625.
doi: 10.3934/dcdsb.2013.18.2597.![]() ![]() ![]() |
[20] |
R. M. May, Limit cycles in predator-prey communities, Science, 177 (1972), 900-902.
doi: 10.1126/science.177.4052.900.![]() ![]() |
[21] |
J. D. Murray, Mathematical Biology. I: An Introduction, Third edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002.
![]() ![]() |
[22] |
R. Peng and M. X. Wang, Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model, Appl. Math. Lett., 20 (2007), 664-670.
doi: 10.1016/j.aml.2006.08.020.![]() ![]() ![]() |
[23] |
Y. W. Qi and Y. Zhu, The study of global stability of a diffusive Holling-Tanner predator-prey model, Appl. Math. Lett., 57 (2016), 132-138.
doi: 10.1016/j.aml.2016.01.017.![]() ![]() ![]() |
[24] |
M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97 (1963), 209-223.
doi: 10.1086/282272.![]() ![]() |
[25] |
J. P. Shi, Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 169 (1999), 494-531.
doi: 10.1006/jfan.1999.3483.![]() ![]() ![]() |
[26] |
J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812.
doi: 10.1016/j.jde.2008.09.009.![]() ![]() ![]() |
[27] |
J. P. Shi, Z. F. Xie and K. Little, Cross-diffusion induced instability and stability in reaction-diffusion systems, J. Appl. Anal. Comput., 1 (2011), 95-119.
![]() ![]() |
[28] |
J. T. Tanner, The stability and the intrinsic growth rates of prey and predator populations, Ecology, 56 (1975), 855-867.
doi: 10.2307/1936296.![]() ![]() |
[29] |
Y. S. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Appl., 11 (2010), 2056-2064.
doi: 10.1016/j.nonrwa.2009.05.005.![]() ![]() ![]() |
[30] |
A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012.![]() ![]() ![]() |
[31] |
A. M. Turner and G. G. Mittelbach, Predator avoidance and community structure: Interactions among piscivores, planktivores, and plankton, Ecology, 71 (1990), 2241-2254.
doi: 10.2307/1938636.![]() ![]() |
[32] |
J. F. Wang, J. P. Shi and J. J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, J. Differential Equations, 251 (2011), 1276-1304.
doi: 10.1016/j.jde.2011.03.004.![]() ![]() ![]() |
[33] |
J. F. Wang, J. P. Shi and J. J. Wei, Predator-prey system with strong Allee effect in prey, J. Math. Biol., 62 (2011), 291-331.
![]() |
[34] |
J. F. Wang and Y. W. Wang, Bifurcation analysis in a diffusive Segel-Jackson model, J. Math. Anal. Appl., 415 (2014), 204-216.
doi: 10.1016/j.jmaa.2014.01.070.![]() ![]() ![]() |
[35] |
J. F. Wang, J. J. Wei and J. P. Shi, Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems, J. Differential Equations, 260 (2016), 3495-3523.
doi: 10.1016/j.jde.2015.10.036.![]() ![]() ![]() |
[36] |
Q. Wang, Y. Song and L. J. Shao, Nonconstant positive steady states and pattern formation of 1D prey-taxis systems, J. Nonlinear Sci., 27 (2017), 71-97.
doi: 10.1007/s00332-016-9326-5.![]() ![]() ![]() |
[37] |
W. M. Wang, Z. G. Guo, R. K. Upadhyay and Y. Z. Lin, Pattern formation in a cross-diffusive Holling-Tanner model, Discrete Dyn. Nat. Soc., (2012), Art. ID 828219, 12 pp.
doi: 10.1155/2012/828219.![]() ![]() ![]() |
[38] |
X. L. Wang, W. D. Wang and G. H. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Math. Methods Appl. Sci., 38 (2015), 431-443.
doi: 10.1002/mma.3079.![]() ![]() ![]() |
[39] |
M. Winkler, Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation, J. Differential Equations, 263 (2017), 4826-4869.
doi: 10.1016/j.jde.2017.06.002.![]() ![]() ![]() |
[40] |
M. Winkler, The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in $L^1$, Adv. Nonlinear Anal., 9 (2020), 526-566.
doi: 10.1515/anona-2020-0013.![]() ![]() ![]() |
[41] |
S. N. Wu, J. P. Shi and B. Y. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differential Equations, 260 (2016), 5847-5874.
doi: 10.1016/j.jde.2015.12.024.![]() ![]() ![]() |
[42] |
S. N. Wu, J. F. Wang and J. P. Shi, Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Models Methods Appl. Sci., 28 (2018), 2275-2312.
doi: 10.1142/S0218202518400158.![]() ![]() ![]() |
[43] |
T. Xiang, Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics, Nonlinear Anal. Real World Appl., 39 (2018), 278-299.
doi: 10.1016/j.nonrwa.2017.07.001.![]() ![]() ![]() |
[44] |
F. Q. Yi, J. J. Wei and J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977.
doi: 10.1016/j.jde.2008.10.024.![]() ![]() ![]() |
[45] |
T. M. Zaret and J. S. Suffern, Vertical migration in zooplankton as a predator avoidance mechanism, Limnology and Oceanography, 21 (1976), 804-813.
![]() |
The stable region/unstable region of equilibrium
(Left):
Turing instability for (25) with
Stable constant equilibrium for (25) with
Turing pattern in (25) is stabilized when
Instability induced by taxis in (25) when
The amplitude change of non-constant equilibrium solutions of (25) for different