• Previous Article
    Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria
  • DCDS-B Home
  • This Issue
  • Next Article
    Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis
March  2021, 26(3): 1291-1303. doi: 10.3934/dcdsb.2020163

Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum

1. 

College of Mathematics, Changchun Normal University, Changchun 130032, China

2. 

Department of Mathematics, Nanjing University, Nanjing 210093, China

Received  May 2019 Published  May 2020

This paper deals with the 3D incompressible Navier-Stokes equations with density-dependent viscosity in the whole space. The global well-posedness and exponential decay of strong solutions is established in the vacuum cases, provided the assumption that the bound of density is suitably small, which extends the results of [Nonlinear Anal. Real World Appl., 46:58-81, 2019] to the global one. However, it's entirely different from the recent work [arxiv: 1709.05608v1, 2017] and [J. Math. Fluid Mech., 15:747-758, 2013], there is not any smallness condition on the velocity.

Citation: Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163
References:
[1]

S. A. Antontesv and A. V. Kazhikov, Mathematical Study of Flows of Nonhomogeneous Fluids, Lecture Notes, Novosi-birsk State University, Novosibirsk, USSR, 1973 (in Russian). Google Scholar

[2]

S. N. Antontsev, A. V. Kazhiktov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and its Applications, 22. North-Holland Publishing Co., Amsterdam, 1990.  Google Scholar

[3]

Y. Cho and H. Kim, Unique solvability for the density-dependent Navier-Stokes equations, Nonlinear Anal., 59 (2004), 465-480.  doi: 10.1016/j.na.2004.07.020.  Google Scholar

[4]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.  doi: 10.1081/PDE-120021191.  Google Scholar

[5]

W. CraigX. D. Huang and Y. Wang, Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations, J. Math. Fluid Mech., 15 (2013), 747-758.  doi: 10.1007/s00021-013-0133-6.  Google Scholar

[6]

B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Ration. Mech. Anal., 137 (1997), 135-158.  doi: 10.1007/s002050050025.  Google Scholar

[7]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problem, Second edition, Springer Monographs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9.  Google Scholar

[8]

C. He, J. Li and B. Lv, On the Cauchy problem of 3D nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, https://arXiv.org/abs/1709.05608. Google Scholar

[9]

X. D. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2014), 511-527.  doi: 10.1016/j.jde.2012.08.029.  Google Scholar

[10]

X. D. Huang and Y. Wang, Global strong solution with vacuum to the two dimensional density-dependent Navier-Stokes system, SIAM J. Math. Anal., 46 (2014), 1771-1788.  doi: 10.1137/120894865.  Google Scholar

[11]

X. D. Huang and Y. Wang, Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 259 (2015), 1606-1627.  doi: 10.1016/j.jde.2015.03.008.  Google Scholar

[12]

A. V. Kazhikov, Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk., 216 (1974), 1008-1010.   Google Scholar

[13]

H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal., 37 (2006), 1417-1434.  doi: 10.1137/S0036141004442197.  Google Scholar

[14]

O. A. Ladyzhenskaya and V. A. Solonnikov, Unique solvability of an initial and boundary value problem for viscous incompressible nonhomogeneous fluids, J. Sov. Math., 9 (1978), 697-749.  doi: 10.1007/BF01085325.  Google Scholar

[15]

J. K. Li, Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density, J. Differential Equations, 263 (2017), 6512-6536.  doi: 10.1016/j.jde.2017.07.021.  Google Scholar

[16]

P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. I. Incompressible Models, Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1996.  Google Scholar

[17]

B. Q. LüX. D. Shi and X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier-Stokes equations with vacuum, Nonlinearity, 31 (2018), 2617-2632.  doi: 10.1088/1361-6544/aab31f.  Google Scholar

[18]

B. Q. Lü and S. S. Song, On local strong solutions to the three-dimensional nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, Nonlinear Anal. Real World Appl., 46 (2019), 58-81.  doi: 10.1016/j.nonrwa.2018.09.001.  Google Scholar

[19]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.  Google Scholar

[20]

H. B. Yu and P. X. Zhang, Global strong solutions to the incompressible Navier-Stokes equations with density-dependent viscosity, J. Math. Anal. Appl., 444 (2016), 690-699.  doi: 10.1016/j.jmaa.2016.06.066.  Google Scholar

[21]

J. W. Zhang, Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differential Equations, 259 (2015), 1722-1742.  doi: 10.1016/j.jde.2015.03.011.  Google Scholar

show all references

References:
[1]

S. A. Antontesv and A. V. Kazhikov, Mathematical Study of Flows of Nonhomogeneous Fluids, Lecture Notes, Novosi-birsk State University, Novosibirsk, USSR, 1973 (in Russian). Google Scholar

[2]

S. N. Antontsev, A. V. Kazhiktov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and its Applications, 22. North-Holland Publishing Co., Amsterdam, 1990.  Google Scholar

[3]

Y. Cho and H. Kim, Unique solvability for the density-dependent Navier-Stokes equations, Nonlinear Anal., 59 (2004), 465-480.  doi: 10.1016/j.na.2004.07.020.  Google Scholar

[4]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.  doi: 10.1081/PDE-120021191.  Google Scholar

[5]

W. CraigX. D. Huang and Y. Wang, Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations, J. Math. Fluid Mech., 15 (2013), 747-758.  doi: 10.1007/s00021-013-0133-6.  Google Scholar

[6]

B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Ration. Mech. Anal., 137 (1997), 135-158.  doi: 10.1007/s002050050025.  Google Scholar

[7]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problem, Second edition, Springer Monographs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9.  Google Scholar

[8]

C. He, J. Li and B. Lv, On the Cauchy problem of 3D nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, https://arXiv.org/abs/1709.05608. Google Scholar

[9]

X. D. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2014), 511-527.  doi: 10.1016/j.jde.2012.08.029.  Google Scholar

[10]

X. D. Huang and Y. Wang, Global strong solution with vacuum to the two dimensional density-dependent Navier-Stokes system, SIAM J. Math. Anal., 46 (2014), 1771-1788.  doi: 10.1137/120894865.  Google Scholar

[11]

X. D. Huang and Y. Wang, Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 259 (2015), 1606-1627.  doi: 10.1016/j.jde.2015.03.008.  Google Scholar

[12]

A. V. Kazhikov, Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk., 216 (1974), 1008-1010.   Google Scholar

[13]

H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal., 37 (2006), 1417-1434.  doi: 10.1137/S0036141004442197.  Google Scholar

[14]

O. A. Ladyzhenskaya and V. A. Solonnikov, Unique solvability of an initial and boundary value problem for viscous incompressible nonhomogeneous fluids, J. Sov. Math., 9 (1978), 697-749.  doi: 10.1007/BF01085325.  Google Scholar

[15]

J. K. Li, Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density, J. Differential Equations, 263 (2017), 6512-6536.  doi: 10.1016/j.jde.2017.07.021.  Google Scholar

[16]

P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. I. Incompressible Models, Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1996.  Google Scholar

[17]

B. Q. LüX. D. Shi and X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier-Stokes equations with vacuum, Nonlinearity, 31 (2018), 2617-2632.  doi: 10.1088/1361-6544/aab31f.  Google Scholar

[18]

B. Q. Lü and S. S. Song, On local strong solutions to the three-dimensional nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, Nonlinear Anal. Real World Appl., 46 (2019), 58-81.  doi: 10.1016/j.nonrwa.2018.09.001.  Google Scholar

[19]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.  Google Scholar

[20]

H. B. Yu and P. X. Zhang, Global strong solutions to the incompressible Navier-Stokes equations with density-dependent viscosity, J. Math. Anal. Appl., 444 (2016), 690-699.  doi: 10.1016/j.jmaa.2016.06.066.  Google Scholar

[21]

J. W. Zhang, Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differential Equations, 259 (2015), 1722-1742.  doi: 10.1016/j.jde.2015.03.011.  Google Scholar

[1]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[2]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[5]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[6]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[7]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[8]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[9]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[10]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[11]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[12]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[13]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[14]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[15]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[16]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[17]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[18]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[19]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[20]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (78)
  • HTML views (248)
  • Cited by (0)

Other articles
by authors

[Back to Top]