-
Previous Article
Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria
- DCDS-B Home
- This Issue
-
Next Article
Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis
Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum
1. | College of Mathematics, Changchun Normal University, Changchun 130032, China |
2. | Department of Mathematics, Nanjing University, Nanjing 210093, China |
This paper deals with the 3D incompressible Navier-Stokes equations with density-dependent viscosity in the whole space. The global well-posedness and exponential decay of strong solutions is established in the vacuum cases, provided the assumption that the bound of density is suitably small, which extends the results of [Nonlinear Anal. Real World Appl., 46:58-81, 2019] to the global one. However, it's entirely different from the recent work [arxiv: 1709.05608v1, 2017] and [J. Math. Fluid Mech., 15:747-758, 2013], there is not any smallness condition on the velocity.
References:
[1] |
S. A. Antontesv and A. V. Kazhikov, Mathematical Study of Flows of Nonhomogeneous Fluids, Lecture Notes, Novosi-birsk State University, Novosibirsk, USSR, 1973 (in Russian). |
[2] |
S. N. Antontsev, A. V. Kazhiktov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and its Applications, 22. North-Holland Publishing Co., Amsterdam, 1990. |
[3] |
Y. Cho and H. Kim,
Unique solvability for the density-dependent Navier-Stokes equations, Nonlinear Anal., 59 (2004), 465-480.
doi: 10.1016/j.na.2004.07.020. |
[4] |
H. J. Choe and H. Kim,
Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.
doi: 10.1081/PDE-120021191. |
[5] |
W. Craig, X. D. Huang and Y. Wang,
Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations, J. Math. Fluid Mech., 15 (2013), 747-758.
doi: 10.1007/s00021-013-0133-6. |
[6] |
B. Desjardins,
Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Ration. Mech. Anal., 137 (1997), 135-158.
doi: 10.1007/s002050050025. |
[7] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problem, Second edition, Springer Monographs in Mathematics, Springer, New York, 2011.
doi: 10.1007/978-0-387-09620-9. |
[8] |
C. He, J. Li and B. Lv, On the Cauchy problem of 3D nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, https://arXiv.org/abs/1709.05608. |
[9] |
X. D. Huang and Y. Wang,
Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2014), 511-527.
doi: 10.1016/j.jde.2012.08.029. |
[10] |
X. D. Huang and Y. Wang,
Global strong solution with vacuum to the two dimensional density-dependent Navier-Stokes system, SIAM J. Math. Anal., 46 (2014), 1771-1788.
doi: 10.1137/120894865. |
[11] |
X. D. Huang and Y. Wang,
Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 259 (2015), 1606-1627.
doi: 10.1016/j.jde.2015.03.008. |
[12] |
A. V. Kazhikov,
Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk., 216 (1974), 1008-1010.
|
[13] |
H. Kim,
A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal., 37 (2006), 1417-1434.
doi: 10.1137/S0036141004442197. |
[14] |
O. A. Ladyzhenskaya and V. A. Solonnikov,
Unique solvability of an initial and boundary value problem for viscous incompressible nonhomogeneous fluids, J. Sov. Math., 9 (1978), 697-749.
doi: 10.1007/BF01085325. |
[15] |
J. K. Li,
Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density, J. Differential Equations, 263 (2017), 6512-6536.
doi: 10.1016/j.jde.2017.07.021. |
[16] |
P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. I. Incompressible Models, Oxford
Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications, The
Clarendon Press, Oxford University Press, New York, 1996. |
[17] |
B. Q. Lü, X. D. Shi and X. Zhong,
Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier-Stokes equations with vacuum, Nonlinearity, 31 (2018), 2617-2632.
doi: 10.1088/1361-6544/aab31f. |
[18] |
B. Q. Lü and S. S. Song,
On local strong solutions to the three-dimensional nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, Nonlinear Anal. Real World Appl., 46 (2019), 58-81.
doi: 10.1016/j.nonrwa.2018.09.001. |
[19] |
J. Simon,
Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.
doi: 10.1137/0521061. |
[20] |
H. B. Yu and P. X. Zhang,
Global strong solutions to the incompressible Navier-Stokes equations with density-dependent viscosity, J. Math. Anal. Appl., 444 (2016), 690-699.
doi: 10.1016/j.jmaa.2016.06.066. |
[21] |
J. W. Zhang,
Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differential Equations, 259 (2015), 1722-1742.
doi: 10.1016/j.jde.2015.03.011. |
show all references
References:
[1] |
S. A. Antontesv and A. V. Kazhikov, Mathematical Study of Flows of Nonhomogeneous Fluids, Lecture Notes, Novosi-birsk State University, Novosibirsk, USSR, 1973 (in Russian). |
[2] |
S. N. Antontsev, A. V. Kazhiktov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and its Applications, 22. North-Holland Publishing Co., Amsterdam, 1990. |
[3] |
Y. Cho and H. Kim,
Unique solvability for the density-dependent Navier-Stokes equations, Nonlinear Anal., 59 (2004), 465-480.
doi: 10.1016/j.na.2004.07.020. |
[4] |
H. J. Choe and H. Kim,
Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.
doi: 10.1081/PDE-120021191. |
[5] |
W. Craig, X. D. Huang and Y. Wang,
Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations, J. Math. Fluid Mech., 15 (2013), 747-758.
doi: 10.1007/s00021-013-0133-6. |
[6] |
B. Desjardins,
Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Ration. Mech. Anal., 137 (1997), 135-158.
doi: 10.1007/s002050050025. |
[7] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problem, Second edition, Springer Monographs in Mathematics, Springer, New York, 2011.
doi: 10.1007/978-0-387-09620-9. |
[8] |
C. He, J. Li and B. Lv, On the Cauchy problem of 3D nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, https://arXiv.org/abs/1709.05608. |
[9] |
X. D. Huang and Y. Wang,
Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2014), 511-527.
doi: 10.1016/j.jde.2012.08.029. |
[10] |
X. D. Huang and Y. Wang,
Global strong solution with vacuum to the two dimensional density-dependent Navier-Stokes system, SIAM J. Math. Anal., 46 (2014), 1771-1788.
doi: 10.1137/120894865. |
[11] |
X. D. Huang and Y. Wang,
Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 259 (2015), 1606-1627.
doi: 10.1016/j.jde.2015.03.008. |
[12] |
A. V. Kazhikov,
Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk., 216 (1974), 1008-1010.
|
[13] |
H. Kim,
A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal., 37 (2006), 1417-1434.
doi: 10.1137/S0036141004442197. |
[14] |
O. A. Ladyzhenskaya and V. A. Solonnikov,
Unique solvability of an initial and boundary value problem for viscous incompressible nonhomogeneous fluids, J. Sov. Math., 9 (1978), 697-749.
doi: 10.1007/BF01085325. |
[15] |
J. K. Li,
Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density, J. Differential Equations, 263 (2017), 6512-6536.
doi: 10.1016/j.jde.2017.07.021. |
[16] |
P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. I. Incompressible Models, Oxford
Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications, The
Clarendon Press, Oxford University Press, New York, 1996. |
[17] |
B. Q. Lü, X. D. Shi and X. Zhong,
Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier-Stokes equations with vacuum, Nonlinearity, 31 (2018), 2617-2632.
doi: 10.1088/1361-6544/aab31f. |
[18] |
B. Q. Lü and S. S. Song,
On local strong solutions to the three-dimensional nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, Nonlinear Anal. Real World Appl., 46 (2019), 58-81.
doi: 10.1016/j.nonrwa.2018.09.001. |
[19] |
J. Simon,
Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.
doi: 10.1137/0521061. |
[20] |
H. B. Yu and P. X. Zhang,
Global strong solutions to the incompressible Navier-Stokes equations with density-dependent viscosity, J. Math. Anal. Appl., 444 (2016), 690-699.
doi: 10.1016/j.jmaa.2016.06.066. |
[21] |
J. W. Zhang,
Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differential Equations, 259 (2015), 1722-1742.
doi: 10.1016/j.jde.2015.03.011. |
[1] |
Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041 |
[2] |
Xulong Qin, Zheng-An Yao, Hongxing Zhao. One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries. Communications on Pure and Applied Analysis, 2008, 7 (2) : 373-381. doi: 10.3934/cpaa.2008.7.373 |
[3] |
Zhuan Ye. Remark on exponential decay-in-time of global strong solutions to 3D inhomogeneous incompressible micropolar equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6725-6743. doi: 10.3934/dcdsb.2019164 |
[4] |
Guangwu Wang, Boling Guo. Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6141-6166. doi: 10.3934/dcdsb.2019133 |
[5] |
Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246 |
[6] |
Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085 |
[7] |
Wenjun Wang, Lei Yao. Spherically symmetric Navier-Stokes equations with degenerate viscosity coefficients and vacuum. Communications on Pure and Applied Analysis, 2010, 9 (2) : 459-481. doi: 10.3934/cpaa.2010.9.459 |
[8] |
Jianwei Yang, Peng Cheng, Yudong Wang. Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity. Electronic Research Announcements, 2015, 22: 20-31. doi: 10.3934/era.2015.22.20 |
[9] |
J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647 |
[10] |
Wuming Li, Xiaojun Liu, Quansen Jiu. The decay estimates of solutions for 1D compressible flows with density-dependent viscosity coefficients. Communications on Pure and Applied Analysis, 2013, 12 (2) : 647-661. doi: 10.3934/cpaa.2013.12.647 |
[11] |
Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic and Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004 |
[12] |
Jishan Fan, Fucai Li, Gen Nakamura. Global strong solution to the two-dimensional density-dependent magnetohydrodynamic equations with vaccum. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1481-1490. doi: 10.3934/cpaa.2014.13.1481 |
[13] |
Yongfu Wang. Global strong solution to the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows with vacuum. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4317-4333. doi: 10.3934/dcdsb.2020099 |
[14] |
Ping Chen, Ting Zhang. A vacuum problem for multidimensional compressible Navier-Stokes equations with degenerate viscosity coefficients. Communications on Pure and Applied Analysis, 2008, 7 (4) : 987-1016. doi: 10.3934/cpaa.2008.7.987 |
[15] |
Yuming Qin, Lan Huang, Shuxian Deng, Zhiyong Ma, Xiaoke Su, Xinguang Yang. Interior regularity of the compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 163-192. doi: 10.3934/dcdss.2009.2.163 |
[16] |
Xin Zhong. Global well-posedness to the cauchy problem of two-dimensional density-dependent boussinesq equations with large initial data and vacuum. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6713-6745. doi: 10.3934/dcds.2019292 |
[17] |
Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613 |
[18] |
Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052 |
[19] |
Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997 |
[20] |
Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]