\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria

Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • In this paper we study the rate of convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. We first analyze a three-species system with boundary equilibria in some stoichiometric classes, and whose right hand side is bounded above by a quadratic nonlinearity in the positive orthant. We prove similar results on the convergence to the positive equilibrium for a fairly general two-species reversible reaction-diffusion network with boundary equilibria.

    Mathematics Subject Classification: 35B40, 35K57, 35Q92, 80A30, 80A32, 90E20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Construction of a rectangular invariant region for the reversible reaction $ m_1A+n_1B\rightleftharpoons m_2A+n_2B $ for the cases a. $ \bar m = m_1-m_2, \ \bar n = n_2-n_1 $ nonzero and of the same sign; b. $ \bar m, \bar n $ nonzero and of different signs

  • [1] D. F. Anderson, Global asymptotic stability for a class of nonlinear chemical equations, SIAM J. Appl. Math., 68 (2008), 1464-1476.  doi: 10.1137/070698282.
    [2] D. F. Anderson and A. Shiu, The dynamics of weakly reversible population processes near facets, SIAM J. Appl. Math., 70 (2010), 1840-1858.  doi: 10.1137/090764098.
    [3] D. F. Anderson, A proof of the global attractor conjecture in the single linkage class case, SIAM J. Appl. Math., 71 (2011), 1487-1508.  doi: 10.1137/11082631X.
    [4] A. ArnoldP. MarkowichG. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26 (2001), 43-100.  doi: 10.1081/PDE-100002246.
    [5] W. X. ChenC. M. Li and E. S. Wright, On a nonlinear parabolic system-modeling chemical reactions in rivers, Communications On Pure And Applied Analysis, 4 (2005), 889-899.  doi: 10.3934/cpaa.2005.4.889.
    [6] M. ChoulliL. Kayser and E. M. Ouhabaz, Observations on Gaussian upper bounds for Neumann heat kernels, Bulletin of the Australian Mathematical Society, 92 (2015), 429-439.  doi: 10.1017/S0004972715000611.
    [7] G. CraciunA. DickensteinA. Shiu and B. Sturmfels, Toric dynamical systems, Journal of Symbolic Computation, 44 (2009), 1551-1565.  doi: 10.1016/j.jsc.2008.08.006.
    [8] G. CraciunF. Nazarov and C. Pantea, Persistence and permanence of mass-action and power-law dynamical systems, SIAM J. Appl. Math., 73 (2013), 305-329.  doi: 10.1137/100812355.
    [9] G. Craciun, Toric differential inclusions and a proof of the global attractor conjecture, (2016), arXiv: 1501.02860.
    [10] L. Desvillettes and K. Fellner, Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations, J. Math. Anal. Appl., 319 (2006), 157-176.  doi: 10.1016/j.jmaa.2005.07.003.
    [11] L. Desvillettes and K. Fellner, Entropy methods for reaction-diffusion equations: Slowly growing a-priori bounds, Rev. Mat. Iberoamericana, 24 (2008), 407-431.  doi: 10.4171/RMI/541.
    [12] L. Desvillettes and K. Fellner, Exponential convergence to equilibrium for a nonlinear reaction-diffusion systems arising in reversible chemistry, System Modelling and Optimization, IFIP AICT, 443 (2014), 96-104. 
    [13] L. DesvillettesK. FellnerM. Pierre and J. Vovelle, About global existence for quadratic systems of reaction-diffusion, J. Adv. Nonlinear Stud., 7 (2007), 491-511.  doi: 10.1515/ans-2007-0309.
    [14] L. DesvillettesK. Fellner and B. Q. Tang, Trend to equilibrium for reaction-diffusion system arising from complex balanced chemical reaction networks, SIAM J. Math. Anal., 49 (2017), 2666-2709.  doi: 10.1137/16M1073935.
    [15] M. Feinberg, Complex balancing in general kinetic systems, Archive for Rational Mechanics and Analysis, 49 (1972/73), 187-194.  doi: 10.1007/BF00255665.
    [16] K. Fellner, W. Prager and B. Q. Tang, The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks, Kinet. Relat. Models, 10 (2017), 1055–1087, arXiv: 1504.08221. doi: 10.3934/krm.2017042.
    [17] K. Fellner and B. Q. Tang, Convergence to equilibrium of renormalised solutions to nonlinear chemical reaction-diffusion systems, Z. Angew. Math. Phys., 69 (2018), Paper No. 54, 30 pp. doi: 10.1007/s00033-018-0948-3.
    [18] J. Fischer, Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems, Arch. Ration. Mech. Anal., 218 (2015), 553-587.  doi: 10.1007/s00205-015-0866-x.
    [19] W. E. FitzgibbonJ. Morgan and R. Sanders, Global existence and boundedness for a class of inhomogeneous semilinear parabolic systems, Nonlin. Anal., 19 (1992), 885-899.  doi: 10.1016/0362-546X(92)90057-L.
    [20] M. GopalkrishnanE. Miller and A. Shiu, A geometric approach to the global attractor conjecture, SIAM J. Appl. Dyn. Syst., 13 (2014), 758-797.  doi: 10.1137/130928170.
    [21] M. Gopalkrishnan, E. Miller and A. Shiu, A projection argument for differential inclusions, with applications to persistence of mass-action kinetics, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), Paper 025, 25 pp. doi: 10.3842/SIGMA.2013.025.
    [22] F. Horn and R. Jackson, General mass action kinetics, Archive for Rational Mechanics and Analysis, 47 (1972), 81-116.  doi: 10.1007/BF00251225.
    [23] F. Horn, The dynamics of open reaction systems, Mathematical Aspects of Chemical and Biochemical Problems and Quantum Chemistry, SIAM-AMS Proceedings, Amer. Math. Soc., Providence, R.I., 8 (1974), 125-137. 
    [24] O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Trans. Math. Monographs, AMS, 23 (1995).
    [25] A. MielkeJ. Haskovec and P. A. Markowich, On uniform decay of the entropy for reaction-diffusion systems, J. Dynam. Differential Equations, 27 (2015), 897-928.  doi: 10.1007/s10884-014-9394-x.
    [26] M. Minchevaand and D. Siegel, Stability of mass action reaction-diffusion systems, Nonlinear Anal., 56 (2004), 1105-1131.  doi: 10.1016/j.na.2003.10.025.
    [27] F. MohamedC. Pantea and A. Tudorascu, Chemical reaction-diffusion networks: Convergence of the method of lines, J. Math. Chem., 56 (2018), 30-68.  doi: 10.1007/s10910-017-0779-z.
    [28] C. Pantea, On the persistence and global stability of mass-action systems, SIAM J. Math. Anal., 44 (2012), 1636-1673.  doi: 10.1137/110840509.
    [29] M. PierreT. Suzuki and H. Umakoshi, Asymptotic behavior in chemical reaction-diffusion systems with boundary equilibria, J. Appl. Anal. Comp., 8 (2018), 836-858.  doi: 10.11948/2018.836.
    [30] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.
    [31] F. Rothe, Global Solutions of Reaction-Diffusion System, Lecture Notes in Mathematics, 1072. Springer-Verlag, Berlin, 1984. doi: 10.1007/BFb0099278.
    [32] D. Siegel and D. MacLean, Global stability of complex balanced mechanisms, J. Math. Chem., 27 (2000), 89-110.  doi: 10.1023/A:1019183206064.
    [33] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der mathematischen Wissenschaften, 258. Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0.
    [34] E. D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction, IEEE Trans. Automat. Control, 46 (2001), 1028-1047.  doi: 10.1109/9.935056.
    [35] M. E. Taylor, Partial Differential Equation Ⅲ. Nonlinear Equations, Springer Series Applied Mathematical Sciences, 117. Springer, New York, 2011. doi: 10.1007/978-1-4419-7049-7.
    [36] P. Weidemaier, Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L^p$-norm, Electron. Res. Announc. Amer. Math. Soc., 8 (2002), 47-51.  doi: 10.1090/S1079-6762-02-00104-X.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(542) PDF downloads(313) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return