March  2021, 26(3): 1305-1335. doi: 10.3934/dcdsb.2020164

Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria

1. 

Department of Mathematics and Department of Biomolecular Chemistry, University of Wisconsin-Madison

2. 

Department of Mathematics, University of Wisconsin-Madison

3. 

Department of Mathematics, West Virginia University

Received  June 2019 Revised  February 2020 Published  May 2020

In this paper we study the rate of convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. We first analyze a three-species system with boundary equilibria in some stoichiometric classes, and whose right hand side is bounded above by a quadratic nonlinearity in the positive orthant. We prove similar results on the convergence to the positive equilibrium for a fairly general two-species reversible reaction-diffusion network with boundary equilibria.

Citation: Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164
References:
[1]

D. F. Anderson, Global asymptotic stability for a class of nonlinear chemical equations, SIAM J. Appl. Math., 68 (2008), 1464-1476.  doi: 10.1137/070698282.  Google Scholar

[2]

D. F. Anderson and A. Shiu, The dynamics of weakly reversible population processes near facets, SIAM J. Appl. Math., 70 (2010), 1840-1858.  doi: 10.1137/090764098.  Google Scholar

[3]

D. F. Anderson, A proof of the global attractor conjecture in the single linkage class case, SIAM J. Appl. Math., 71 (2011), 1487-1508.  doi: 10.1137/11082631X.  Google Scholar

[4]

A. ArnoldP. MarkowichG. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26 (2001), 43-100.  doi: 10.1081/PDE-100002246.  Google Scholar

[5]

W. X. ChenC. M. Li and E. S. Wright, On a nonlinear parabolic system-modeling chemical reactions in rivers, Communications On Pure And Applied Analysis, 4 (2005), 889-899.  doi: 10.3934/cpaa.2005.4.889.  Google Scholar

[6]

M. ChoulliL. Kayser and E. M. Ouhabaz, Observations on Gaussian upper bounds for Neumann heat kernels, Bulletin of the Australian Mathematical Society, 92 (2015), 429-439.  doi: 10.1017/S0004972715000611.  Google Scholar

[7]

G. CraciunA. DickensteinA. Shiu and B. Sturmfels, Toric dynamical systems, Journal of Symbolic Computation, 44 (2009), 1551-1565.  doi: 10.1016/j.jsc.2008.08.006.  Google Scholar

[8]

G. CraciunF. Nazarov and C. Pantea, Persistence and permanence of mass-action and power-law dynamical systems, SIAM J. Appl. Math., 73 (2013), 305-329.  doi: 10.1137/100812355.  Google Scholar

[9]

G. Craciun, Toric differential inclusions and a proof of the global attractor conjecture, (2016), arXiv: 1501.02860. Google Scholar

[10]

L. Desvillettes and K. Fellner, Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations, J. Math. Anal. Appl., 319 (2006), 157-176.  doi: 10.1016/j.jmaa.2005.07.003.  Google Scholar

[11]

L. Desvillettes and K. Fellner, Entropy methods for reaction-diffusion equations: Slowly growing a-priori bounds, Rev. Mat. Iberoamericana, 24 (2008), 407-431.  doi: 10.4171/RMI/541.  Google Scholar

[12]

L. Desvillettes and K. Fellner, Exponential convergence to equilibrium for a nonlinear reaction-diffusion systems arising in reversible chemistry, System Modelling and Optimization, IFIP AICT, 443 (2014), 96-104.   Google Scholar

[13]

L. DesvillettesK. FellnerM. Pierre and J. Vovelle, About global existence for quadratic systems of reaction-diffusion, J. Adv. Nonlinear Stud., 7 (2007), 491-511.  doi: 10.1515/ans-2007-0309.  Google Scholar

[14]

L. DesvillettesK. Fellner and B. Q. Tang, Trend to equilibrium for reaction-diffusion system arising from complex balanced chemical reaction networks, SIAM J. Math. Anal., 49 (2017), 2666-2709.  doi: 10.1137/16M1073935.  Google Scholar

[15]

M. Feinberg, Complex balancing in general kinetic systems, Archive for Rational Mechanics and Analysis, 49 (1972/73), 187-194.  doi: 10.1007/BF00255665.  Google Scholar

[16]

K. Fellner, W. Prager and B. Q. Tang, The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks, Kinet. Relat. Models, 10 (2017), 1055–1087, arXiv: 1504.08221. doi: 10.3934/krm.2017042.  Google Scholar

[17]

K. Fellner and B. Q. Tang, Convergence to equilibrium of renormalised solutions to nonlinear chemical reaction-diffusion systems, Z. Angew. Math. Phys., 69 (2018), Paper No. 54, 30 pp. doi: 10.1007/s00033-018-0948-3.  Google Scholar

[18]

J. Fischer, Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems, Arch. Ration. Mech. Anal., 218 (2015), 553-587.  doi: 10.1007/s00205-015-0866-x.  Google Scholar

[19]

W. E. FitzgibbonJ. Morgan and R. Sanders, Global existence and boundedness for a class of inhomogeneous semilinear parabolic systems, Nonlin. Anal., 19 (1992), 885-899.  doi: 10.1016/0362-546X(92)90057-L.  Google Scholar

[20]

M. GopalkrishnanE. Miller and A. Shiu, A geometric approach to the global attractor conjecture, SIAM J. Appl. Dyn. Syst., 13 (2014), 758-797.  doi: 10.1137/130928170.  Google Scholar

[21]

M. Gopalkrishnan, E. Miller and A. Shiu, A projection argument for differential inclusions, with applications to persistence of mass-action kinetics, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), Paper 025, 25 pp. doi: 10.3842/SIGMA.2013.025.  Google Scholar

[22]

F. Horn and R. Jackson, General mass action kinetics, Archive for Rational Mechanics and Analysis, 47 (1972), 81-116.  doi: 10.1007/BF00251225.  Google Scholar

[23]

F. Horn, The dynamics of open reaction systems, Mathematical Aspects of Chemical and Biochemical Problems and Quantum Chemistry, SIAM-AMS Proceedings, Amer. Math. Soc., Providence, R.I., 8 (1974), 125-137.   Google Scholar

[24]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Trans. Math. Monographs, AMS, 23 (1995). Google Scholar

[25]

A. MielkeJ. Haskovec and P. A. Markowich, On uniform decay of the entropy for reaction-diffusion systems, J. Dynam. Differential Equations, 27 (2015), 897-928.  doi: 10.1007/s10884-014-9394-x.  Google Scholar

[26]

M. Minchevaand and D. Siegel, Stability of mass action reaction-diffusion systems, Nonlinear Anal., 56 (2004), 1105-1131.  doi: 10.1016/j.na.2003.10.025.  Google Scholar

[27]

F. MohamedC. Pantea and A. Tudorascu, Chemical reaction-diffusion networks: Convergence of the method of lines, J. Math. Chem., 56 (2018), 30-68.  doi: 10.1007/s10910-017-0779-z.  Google Scholar

[28]

C. Pantea, On the persistence and global stability of mass-action systems, SIAM J. Math. Anal., 44 (2012), 1636-1673.  doi: 10.1137/110840509.  Google Scholar

[29]

M. PierreT. Suzuki and H. Umakoshi, Asymptotic behavior in chemical reaction-diffusion systems with boundary equilibria, J. Appl. Anal. Comp., 8 (2018), 836-858.  doi: 10.11948/2018.836.  Google Scholar

[30]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[31]

F. Rothe, Global Solutions of Reaction-Diffusion System, Lecture Notes in Mathematics, 1072. Springer-Verlag, Berlin, 1984. doi: 10.1007/BFb0099278.  Google Scholar

[32]

D. Siegel and D. MacLean, Global stability of complex balanced mechanisms, J. Math. Chem., 27 (2000), 89-110.  doi: 10.1023/A:1019183206064.  Google Scholar

[33]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der mathematischen Wissenschaften, 258. Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[34]

E. D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction, IEEE Trans. Automat. Control, 46 (2001), 1028-1047.  doi: 10.1109/9.935056.  Google Scholar

[35]

M. E. Taylor, Partial Differential Equation Ⅲ. Nonlinear Equations, Springer Series Applied Mathematical Sciences, 117. Springer, New York, 2011. doi: 10.1007/978-1-4419-7049-7.  Google Scholar

[36]

P. Weidemaier, Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L^p$-norm, Electron. Res. Announc. Amer. Math. Soc., 8 (2002), 47-51.  doi: 10.1090/S1079-6762-02-00104-X.  Google Scholar

show all references

References:
[1]

D. F. Anderson, Global asymptotic stability for a class of nonlinear chemical equations, SIAM J. Appl. Math., 68 (2008), 1464-1476.  doi: 10.1137/070698282.  Google Scholar

[2]

D. F. Anderson and A. Shiu, The dynamics of weakly reversible population processes near facets, SIAM J. Appl. Math., 70 (2010), 1840-1858.  doi: 10.1137/090764098.  Google Scholar

[3]

D. F. Anderson, A proof of the global attractor conjecture in the single linkage class case, SIAM J. Appl. Math., 71 (2011), 1487-1508.  doi: 10.1137/11082631X.  Google Scholar

[4]

A. ArnoldP. MarkowichG. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26 (2001), 43-100.  doi: 10.1081/PDE-100002246.  Google Scholar

[5]

W. X. ChenC. M. Li and E. S. Wright, On a nonlinear parabolic system-modeling chemical reactions in rivers, Communications On Pure And Applied Analysis, 4 (2005), 889-899.  doi: 10.3934/cpaa.2005.4.889.  Google Scholar

[6]

M. ChoulliL. Kayser and E. M. Ouhabaz, Observations on Gaussian upper bounds for Neumann heat kernels, Bulletin of the Australian Mathematical Society, 92 (2015), 429-439.  doi: 10.1017/S0004972715000611.  Google Scholar

[7]

G. CraciunA. DickensteinA. Shiu and B. Sturmfels, Toric dynamical systems, Journal of Symbolic Computation, 44 (2009), 1551-1565.  doi: 10.1016/j.jsc.2008.08.006.  Google Scholar

[8]

G. CraciunF. Nazarov and C. Pantea, Persistence and permanence of mass-action and power-law dynamical systems, SIAM J. Appl. Math., 73 (2013), 305-329.  doi: 10.1137/100812355.  Google Scholar

[9]

G. Craciun, Toric differential inclusions and a proof of the global attractor conjecture, (2016), arXiv: 1501.02860. Google Scholar

[10]

L. Desvillettes and K. Fellner, Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations, J. Math. Anal. Appl., 319 (2006), 157-176.  doi: 10.1016/j.jmaa.2005.07.003.  Google Scholar

[11]

L. Desvillettes and K. Fellner, Entropy methods for reaction-diffusion equations: Slowly growing a-priori bounds, Rev. Mat. Iberoamericana, 24 (2008), 407-431.  doi: 10.4171/RMI/541.  Google Scholar

[12]

L. Desvillettes and K. Fellner, Exponential convergence to equilibrium for a nonlinear reaction-diffusion systems arising in reversible chemistry, System Modelling and Optimization, IFIP AICT, 443 (2014), 96-104.   Google Scholar

[13]

L. DesvillettesK. FellnerM. Pierre and J. Vovelle, About global existence for quadratic systems of reaction-diffusion, J. Adv. Nonlinear Stud., 7 (2007), 491-511.  doi: 10.1515/ans-2007-0309.  Google Scholar

[14]

L. DesvillettesK. Fellner and B. Q. Tang, Trend to equilibrium for reaction-diffusion system arising from complex balanced chemical reaction networks, SIAM J. Math. Anal., 49 (2017), 2666-2709.  doi: 10.1137/16M1073935.  Google Scholar

[15]

M. Feinberg, Complex balancing in general kinetic systems, Archive for Rational Mechanics and Analysis, 49 (1972/73), 187-194.  doi: 10.1007/BF00255665.  Google Scholar

[16]

K. Fellner, W. Prager and B. Q. Tang, The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks, Kinet. Relat. Models, 10 (2017), 1055–1087, arXiv: 1504.08221. doi: 10.3934/krm.2017042.  Google Scholar

[17]

K. Fellner and B. Q. Tang, Convergence to equilibrium of renormalised solutions to nonlinear chemical reaction-diffusion systems, Z. Angew. Math. Phys., 69 (2018), Paper No. 54, 30 pp. doi: 10.1007/s00033-018-0948-3.  Google Scholar

[18]

J. Fischer, Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems, Arch. Ration. Mech. Anal., 218 (2015), 553-587.  doi: 10.1007/s00205-015-0866-x.  Google Scholar

[19]

W. E. FitzgibbonJ. Morgan and R. Sanders, Global existence and boundedness for a class of inhomogeneous semilinear parabolic systems, Nonlin. Anal., 19 (1992), 885-899.  doi: 10.1016/0362-546X(92)90057-L.  Google Scholar

[20]

M. GopalkrishnanE. Miller and A. Shiu, A geometric approach to the global attractor conjecture, SIAM J. Appl. Dyn. Syst., 13 (2014), 758-797.  doi: 10.1137/130928170.  Google Scholar

[21]

M. Gopalkrishnan, E. Miller and A. Shiu, A projection argument for differential inclusions, with applications to persistence of mass-action kinetics, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), Paper 025, 25 pp. doi: 10.3842/SIGMA.2013.025.  Google Scholar

[22]

F. Horn and R. Jackson, General mass action kinetics, Archive for Rational Mechanics and Analysis, 47 (1972), 81-116.  doi: 10.1007/BF00251225.  Google Scholar

[23]

F. Horn, The dynamics of open reaction systems, Mathematical Aspects of Chemical and Biochemical Problems and Quantum Chemistry, SIAM-AMS Proceedings, Amer. Math. Soc., Providence, R.I., 8 (1974), 125-137.   Google Scholar

[24]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Trans. Math. Monographs, AMS, 23 (1995). Google Scholar

[25]

A. MielkeJ. Haskovec and P. A. Markowich, On uniform decay of the entropy for reaction-diffusion systems, J. Dynam. Differential Equations, 27 (2015), 897-928.  doi: 10.1007/s10884-014-9394-x.  Google Scholar

[26]

M. Minchevaand and D. Siegel, Stability of mass action reaction-diffusion systems, Nonlinear Anal., 56 (2004), 1105-1131.  doi: 10.1016/j.na.2003.10.025.  Google Scholar

[27]

F. MohamedC. Pantea and A. Tudorascu, Chemical reaction-diffusion networks: Convergence of the method of lines, J. Math. Chem., 56 (2018), 30-68.  doi: 10.1007/s10910-017-0779-z.  Google Scholar

[28]

C. Pantea, On the persistence and global stability of mass-action systems, SIAM J. Math. Anal., 44 (2012), 1636-1673.  doi: 10.1137/110840509.  Google Scholar

[29]

M. PierreT. Suzuki and H. Umakoshi, Asymptotic behavior in chemical reaction-diffusion systems with boundary equilibria, J. Appl. Anal. Comp., 8 (2018), 836-858.  doi: 10.11948/2018.836.  Google Scholar

[30]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[31]

F. Rothe, Global Solutions of Reaction-Diffusion System, Lecture Notes in Mathematics, 1072. Springer-Verlag, Berlin, 1984. doi: 10.1007/BFb0099278.  Google Scholar

[32]

D. Siegel and D. MacLean, Global stability of complex balanced mechanisms, J. Math. Chem., 27 (2000), 89-110.  doi: 10.1023/A:1019183206064.  Google Scholar

[33]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der mathematischen Wissenschaften, 258. Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[34]

E. D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction, IEEE Trans. Automat. Control, 46 (2001), 1028-1047.  doi: 10.1109/9.935056.  Google Scholar

[35]

M. E. Taylor, Partial Differential Equation Ⅲ. Nonlinear Equations, Springer Series Applied Mathematical Sciences, 117. Springer, New York, 2011. doi: 10.1007/978-1-4419-7049-7.  Google Scholar

[36]

P. Weidemaier, Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L^p$-norm, Electron. Res. Announc. Amer. Math. Soc., 8 (2002), 47-51.  doi: 10.1090/S1079-6762-02-00104-X.  Google Scholar

Figure 1.  Construction of a rectangular invariant region for the reversible reaction $ m_1A+n_1B\rightleftharpoons m_2A+n_2B $ for the cases a. $ \bar m = m_1-m_2, \ \bar n = n_2-n_1 $ nonzero and of the same sign; b. $ \bar m, \bar n $ nonzero and of different signs
[1]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[2]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[3]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[4]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[5]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[6]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[7]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[8]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[9]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[10]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[11]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[12]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[13]

Juan Manuel Pastor, Javier García-Algarra, José M. Iriondo, José J. Ramasco, Javier Galeano. Dragging in mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 37-52. doi: 10.3934/nhm.2015.10.37

[14]

Gheorghe Craciun, Jiaxin Jin, Polly Y. Yu. Single-target networks. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021065

[15]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[16]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[17]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[18]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[19]

Alessandro Gondolo, Fernando Guevara Vasquez. Characterization and synthesis of Rayleigh damped elastodynamic networks. Networks & Heterogeneous Media, 2014, 9 (2) : 299-314. doi: 10.3934/nhm.2014.9.299

[20]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (111)
  • HTML views (297)
  • Cited by (0)

[Back to Top]