doi: 10.3934/dcdsb.2020165

Bistability of sequestration networks

1. 

School of Mathematical Sciences, Beihang University, Beijing, China

2. 

Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS-CNRS), Toulouse, France

* Corresponding author: jwang@laas.fr

Received  June 2019 Revised  February 2020 Published  May 2020

Fund Project: XT was partially funded by NSF (DMS-1752672). JW was supported by China Postdoctoral Science Foundation under grants 2018M641055

We solve a conjecture on multiple nondegenerate steady states, and prove bistability for sequestration networks. More specifically, we prove that for any odd number of species, and for any production factor, the fully open extension of a sequestration network admits three nondegenerate positive steady states, two of which are locally asymptotically stable. In addition, we provide a non-empty open set in the parameter space where a sequestration network admits bistability, and we present a procedure for computing a witness for bistability.

Citation: Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020165
References:
[1]

C. Bagowski and J. Ferrell, Bistability in the JNK cascade, Curr. Biol., 11 (2001), 1176-1182.  doi: 10.1016/S0960-9822(01)00330-X.  Google Scholar

[2]

M. Banaji and C. Pantea, Some results on injectivity and multistationarity in chemical reaction networks, SIAM J. Appl. Dyn. Syst., 15 (2016), 807-869.  doi: 10.1137/15M1034441.  Google Scholar

[3]

C. Conradi, E. Feliu, M. Mincheva and C. Wiuf, Identifying parameter regions for multistationarity, PLoS Comput. Biol., 13 (2017). doi: 10.1371/journal.pcbi.1005751.  Google Scholar

[4]

C. Conradi and A. Shiu, Dynamics of post-translational modification systems: Recent progress and future challenges, Biophys. J., 114 (2018), 507-515.   Google Scholar

[5]

G. Craciun and M. Feinberg, Multiple equilibria in complex chemical reaction networks. I. The injectivity property, SIAM J. Appl. Math., 65 (2005), 1526-1546.  doi: 10.1137/S0036139904440278.  Google Scholar

[6]

G. CraciunY. Z. Tang and M. Feinberg, Understanding bistability in complex enzyme-driven reaction networks, Proc. Natl. Acad. Sci. USA, 103 (2006), 8697-8702.  doi: 10.1073/pnas.0602767103.  Google Scholar

[7]

G. Craciun and M. Feinberg, Multiple equilibria in complex chemical reaction networks: Semiopen mass action systems, SIAM J. Appl. Math., 70 (2010), 1859-1877.  doi: 10.1137/090756387.  Google Scholar

[8]

B. N. Datta, An elementary proof of the stability criterion of Liénard and Chipart, Linear Algebra Appl., 22 (1978), 89-96.  doi: 10.1016/0024-3795(78)90060-5.  Google Scholar

[9]

A. DickensteinM. P. MillanA. Shiu and X. X. Tang, Multistationarity in structured reaction networks, Bull. Math. Biol., 81 (2019), 1527-1581.  doi: 10.1007/s11538-019-00572-6.  Google Scholar

[10]

M. Domijan and M. Kirkilionis, Bistability and oscillations in chemical reaction networks, J. Math. Biol., 59 (2009), 467-501.  doi: 10.1007/s00285-008-0234-7.  Google Scholar

[11]

E. Feliu, Injectivity, multiple zeros and multistationarity in reaction networks, Proc. A, 471 (2015), 20140530, 18 pp. doi: 10.1098/rspa.2014.0530.  Google Scholar

[12]

B. FélixA. Shiu and Z. Woodstock, Analyzing multistationarity in chemical reaction networks using the determinant optimization method, Appl. Math. Comput., 287/288 (2016), 60-73.  doi: 10.1016/j.amc.2016.04.030.  Google Scholar

[13]

J. E. FerrellJr . and E. M. Machleder, The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes, Science, 280 (1998), 895-898.  doi: 10.1126/science.280.5365.895.  Google Scholar

[14]

S. A. Gerschgorin, Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk. USSR Otd. Fiz.-Mat. Nauk (in German), 6 (1931), 749-754.   Google Scholar

[15]

H. HongX. X. Tang and B. C. Xia, Special algorithm for stability analysis of multistable biological regulatory systems, J. Symbolic Comput., 70 (2015), 112-135.  doi: 10.1016/j.jsc.2014.09.039.  Google Scholar

[16]

M. D. JohnstonS. Müller and C. Pantea, A deficiency-based approach to parametrizing positive equilibria of biochemical reaction systems, Bull. Math. Biol., 81 (2019), 1143-1172.  doi: 10.1007/s11538-018-00562-0.  Google Scholar

[17]

B. Joshi and A. Shiu, A survey of methods for deciding whether a reaction network is multistationary, Math. Model. Nat. Phenom., 10 (2015), 47-67.  doi: 10.1051/mmnp/201510504.  Google Scholar

[18]

B. Joshi and A. Shiu, Which small reaction networks are multistationary?, SIAM J. Appl. Dyn. Syst., 16 (2017), 802-833.  doi: 10.1137/16M1069705.  Google Scholar

[19] R. K. Miller and A. N. Michel, Ordinary Differential Equations, Academic Press, New York-London, 1982.   Google Scholar
[20]

S. MüllerE. FeliuG. RegensburgerC. ConradiA. Shiu and A. Dickenstein, Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry, Found. Comput. Math., 16 (2016), 69-97.  doi: 10.1007/s10208-014-9239-3.  Google Scholar

[21]

N. ObatakeA. ShiuX. X. Tang and A. Torres, Oscillations and bistability in a model of ERK regulation, Journal of Mathematical Biology, 79 (2019), 1515-1549.  doi: 10.1007/s00285-019-01402-y.  Google Scholar

[22]

M. Pérez Millán and A. Dickenstein, The structure of MESSI biological systems, SIAM J. Appl. Dyn. Syst., 17 (2018), 1650-1682.  doi: 10.1137/17M1113722.  Google Scholar

[23]

M. Pérez MillánA. DickensteinA. Shiu and C. Conradi, Chemical reaction systems with toric steady states, Bull. Math. Biol., 74 (2012), 1027-1065.  doi: 10.1007/s11538-011-9685-x.  Google Scholar

[24]

A. Sadeghimanesh and E. Feliu, The multistationarity structure of networks with intermediates and a binomial core network, Bulletin of Mathematical Biology, 81 (2019), 2428-2462.  doi: 10.1007/s11538-019-00612-1.  Google Scholar

[25]

P. M. Schlosser and M. Feinberg, A theory of multiple steady states in isothermal homogeneous CFSTRs with many reactions, Chem. Eng. Sci., 49 (1994), 1749-1767.  doi: 10.1016/0009-2509(94)80061-8.  Google Scholar

[26]

G. Shinar and M. Feinberg, Concordant chemical reaction networks, Math. Biosci., 240 (2012), 92-113.  doi: 10.1016/j.mbs.2012.05.004.  Google Scholar

[27]

A. Shiu and T. de Wolff, Nondegenerate multistationarity in small reaction networks, Discrete Contin. Dyn. Syst. B, 24 (2019), 2683-2700.  doi: 10.3934/dcdsb.2018270.  Google Scholar

[28]

M. Thomson and J. Gunawardena, The rational parameterisation theorem for multisite post-translational modification systems, J. Theoret. Biol., 261 (2009), 626-636.  doi: 10.1016/j.jtbi.2009.09.003.  Google Scholar

[29]

C. Wiuf and E. Feliu, Power-law kinetics and determinant criteria for the preclusion of multistationarity in networks of interacting species, SIAM J. Appl. Dyn. Syst., 12 (2013), 1685-1721.  doi: 10.1137/120873388.  Google Scholar

[30]

W. Xiong and J. E. Ferrell, A positive-feedback-based bistable 'memory module' that governs a cell fate decision, Nature, 426 (2003), 460-465.  doi: 10.1038/nature02089.  Google Scholar

show all references

References:
[1]

C. Bagowski and J. Ferrell, Bistability in the JNK cascade, Curr. Biol., 11 (2001), 1176-1182.  doi: 10.1016/S0960-9822(01)00330-X.  Google Scholar

[2]

M. Banaji and C. Pantea, Some results on injectivity and multistationarity in chemical reaction networks, SIAM J. Appl. Dyn. Syst., 15 (2016), 807-869.  doi: 10.1137/15M1034441.  Google Scholar

[3]

C. Conradi, E. Feliu, M. Mincheva and C. Wiuf, Identifying parameter regions for multistationarity, PLoS Comput. Biol., 13 (2017). doi: 10.1371/journal.pcbi.1005751.  Google Scholar

[4]

C. Conradi and A. Shiu, Dynamics of post-translational modification systems: Recent progress and future challenges, Biophys. J., 114 (2018), 507-515.   Google Scholar

[5]

G. Craciun and M. Feinberg, Multiple equilibria in complex chemical reaction networks. I. The injectivity property, SIAM J. Appl. Math., 65 (2005), 1526-1546.  doi: 10.1137/S0036139904440278.  Google Scholar

[6]

G. CraciunY. Z. Tang and M. Feinberg, Understanding bistability in complex enzyme-driven reaction networks, Proc. Natl. Acad. Sci. USA, 103 (2006), 8697-8702.  doi: 10.1073/pnas.0602767103.  Google Scholar

[7]

G. Craciun and M. Feinberg, Multiple equilibria in complex chemical reaction networks: Semiopen mass action systems, SIAM J. Appl. Math., 70 (2010), 1859-1877.  doi: 10.1137/090756387.  Google Scholar

[8]

B. N. Datta, An elementary proof of the stability criterion of Liénard and Chipart, Linear Algebra Appl., 22 (1978), 89-96.  doi: 10.1016/0024-3795(78)90060-5.  Google Scholar

[9]

A. DickensteinM. P. MillanA. Shiu and X. X. Tang, Multistationarity in structured reaction networks, Bull. Math. Biol., 81 (2019), 1527-1581.  doi: 10.1007/s11538-019-00572-6.  Google Scholar

[10]

M. Domijan and M. Kirkilionis, Bistability and oscillations in chemical reaction networks, J. Math. Biol., 59 (2009), 467-501.  doi: 10.1007/s00285-008-0234-7.  Google Scholar

[11]

E. Feliu, Injectivity, multiple zeros and multistationarity in reaction networks, Proc. A, 471 (2015), 20140530, 18 pp. doi: 10.1098/rspa.2014.0530.  Google Scholar

[12]

B. FélixA. Shiu and Z. Woodstock, Analyzing multistationarity in chemical reaction networks using the determinant optimization method, Appl. Math. Comput., 287/288 (2016), 60-73.  doi: 10.1016/j.amc.2016.04.030.  Google Scholar

[13]

J. E. FerrellJr . and E. M. Machleder, The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes, Science, 280 (1998), 895-898.  doi: 10.1126/science.280.5365.895.  Google Scholar

[14]

S. A. Gerschgorin, Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk. USSR Otd. Fiz.-Mat. Nauk (in German), 6 (1931), 749-754.   Google Scholar

[15]

H. HongX. X. Tang and B. C. Xia, Special algorithm for stability analysis of multistable biological regulatory systems, J. Symbolic Comput., 70 (2015), 112-135.  doi: 10.1016/j.jsc.2014.09.039.  Google Scholar

[16]

M. D. JohnstonS. Müller and C. Pantea, A deficiency-based approach to parametrizing positive equilibria of biochemical reaction systems, Bull. Math. Biol., 81 (2019), 1143-1172.  doi: 10.1007/s11538-018-00562-0.  Google Scholar

[17]

B. Joshi and A. Shiu, A survey of methods for deciding whether a reaction network is multistationary, Math. Model. Nat. Phenom., 10 (2015), 47-67.  doi: 10.1051/mmnp/201510504.  Google Scholar

[18]

B. Joshi and A. Shiu, Which small reaction networks are multistationary?, SIAM J. Appl. Dyn. Syst., 16 (2017), 802-833.  doi: 10.1137/16M1069705.  Google Scholar

[19] R. K. Miller and A. N. Michel, Ordinary Differential Equations, Academic Press, New York-London, 1982.   Google Scholar
[20]

S. MüllerE. FeliuG. RegensburgerC. ConradiA. Shiu and A. Dickenstein, Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry, Found. Comput. Math., 16 (2016), 69-97.  doi: 10.1007/s10208-014-9239-3.  Google Scholar

[21]

N. ObatakeA. ShiuX. X. Tang and A. Torres, Oscillations and bistability in a model of ERK regulation, Journal of Mathematical Biology, 79 (2019), 1515-1549.  doi: 10.1007/s00285-019-01402-y.  Google Scholar

[22]

M. Pérez Millán and A. Dickenstein, The structure of MESSI biological systems, SIAM J. Appl. Dyn. Syst., 17 (2018), 1650-1682.  doi: 10.1137/17M1113722.  Google Scholar

[23]

M. Pérez MillánA. DickensteinA. Shiu and C. Conradi, Chemical reaction systems with toric steady states, Bull. Math. Biol., 74 (2012), 1027-1065.  doi: 10.1007/s11538-011-9685-x.  Google Scholar

[24]

A. Sadeghimanesh and E. Feliu, The multistationarity structure of networks with intermediates and a binomial core network, Bulletin of Mathematical Biology, 81 (2019), 2428-2462.  doi: 10.1007/s11538-019-00612-1.  Google Scholar

[25]

P. M. Schlosser and M. Feinberg, A theory of multiple steady states in isothermal homogeneous CFSTRs with many reactions, Chem. Eng. Sci., 49 (1994), 1749-1767.  doi: 10.1016/0009-2509(94)80061-8.  Google Scholar

[26]

G. Shinar and M. Feinberg, Concordant chemical reaction networks, Math. Biosci., 240 (2012), 92-113.  doi: 10.1016/j.mbs.2012.05.004.  Google Scholar

[27]

A. Shiu and T. de Wolff, Nondegenerate multistationarity in small reaction networks, Discrete Contin. Dyn. Syst. B, 24 (2019), 2683-2700.  doi: 10.3934/dcdsb.2018270.  Google Scholar

[28]

M. Thomson and J. Gunawardena, The rational parameterisation theorem for multisite post-translational modification systems, J. Theoret. Biol., 261 (2009), 626-636.  doi: 10.1016/j.jtbi.2009.09.003.  Google Scholar

[29]

C. Wiuf and E. Feliu, Power-law kinetics and determinant criteria for the preclusion of multistationarity in networks of interacting species, SIAM J. Appl. Dyn. Syst., 12 (2013), 1685-1721.  doi: 10.1137/120873388.  Google Scholar

[30]

W. Xiong and J. E. Ferrell, A positive-feedback-based bistable 'memory module' that governs a cell fate decision, Nature, 426 (2003), 460-465.  doi: 10.1038/nature02089.  Google Scholar

[1]

Roy Malka, Vered Rom-Kedar. Bacteria--phagocyte dynamics, axiomatic modelling and mass-action kinetics. Mathematical Biosciences & Engineering, 2011, 8 (2) : 475-502. doi: 10.3934/mbe.2011.8.475

[2]

Anne Shiu, Timo de Wolff. Nondegenerate multistationarity in small reaction networks. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2683-2700. doi: 10.3934/dcdsb.2018270

[3]

Klemens Fellner, Wolfang Prager, Bao Q. Tang. The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks. Kinetic & Related Models, 2017, 10 (4) : 1055-1087. doi: 10.3934/krm.2017042

[4]

Maya Mincheva, Gheorghe Craciun. Graph-theoretic conditions for zero-eigenvalue Turing instability in general chemical reaction networks. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1207-1226. doi: 10.3934/mbe.2013.10.1207

[5]

Gershon Wolansky. Limit theorems for optimal mass transportation and applications to networks. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 365-374. doi: 10.3934/dcds.2011.30.365

[6]

Julien Coatléven, Claudio Altafini. A kinetic mechanism inducing oscillations in simple chemical reactions networks. Mathematical Biosciences & Engineering, 2010, 7 (2) : 301-312. doi: 10.3934/mbe.2010.7.301

[7]

Andrea Picco, Lamberto Rondoni. Boltzmann maps for networks of chemical reactions and the multi-stability problem. Networks & Heterogeneous Media, 2009, 4 (3) : 501-526. doi: 10.3934/nhm.2009.4.501

[8]

Chengxia Lei, Jie Xiong, Xinhui Zhou. Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 81-98. doi: 10.3934/dcdsb.2019173

[9]

Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks & Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295

[10]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020346

[11]

Murat Arcak, Eduardo D. Sontag. A passivity-based stability criterion for a class of biochemical reaction networks. Mathematical Biosciences & Engineering, 2008, 5 (1) : 1-19. doi: 10.3934/mbe.2008.5.1

[12]

Ivanka Stamova, Gani Stamov. On the stability of sets for reaction–diffusion Cohen–Grossberg delayed neural networks. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020370

[13]

Congming Li, Eric S. Wright. Modeling chemical reactions in rivers: A three component reaction. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 377-384. doi: 10.3934/dcds.2001.7.373

[14]

Casian Pantea, Heinz Koeppl, Gheorghe Craciun. Global injectivity and multiple equilibria in uni- and bi-molecular reaction networks. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2153-2170. doi: 10.3934/dcdsb.2012.17.2153

[15]

B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077

[16]

Jianping Zhou, Yamin Liu, Ju H. Park, Qingkai Kong, Zhen Wang. Fault-tolerant anti-synchronization control for chaotic switched neural networks with time delay and reaction diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020357

[17]

M. Syed Ali, L. Palanisamy, Nallappan Gunasekaran, Ahmed Alsaedi, Bashir Ahmad. Finite-time exponential synchronization of reaction-diffusion delayed complex-dynamical networks. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020395

[18]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[19]

Juan Manuel Pastor, Javier García-Algarra, José M. Iriondo, José J. Ramasco, Javier Galeano. Dragging in mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 37-52. doi: 10.3934/nhm.2015.10.37

[20]

Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks. Networks & Heterogeneous Media, 2006, 1 (1) : 41-56. doi: 10.3934/nhm.2006.1.41

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (25)
  • HTML views (92)
  • Cited by (0)

Other articles
by authors

[Back to Top]