[1]
|
M. Abbaszadeh and M. Dehghan, An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate, Numer. Algor., 75 (2017), 173-211.
doi: 10.1007/s11075-016-0201-0.
|
[2]
|
D. Baffet and J. S. Hesthaven, A kernel compression scheme for fractional differential equations, SIAM J. Numer. Anal., 55 (2017), 496-520.
doi: 10.1137/15M1043960.
|
[3]
|
M. Caputo, Mean fractional-order-derivatives differential equations and filters, Ann. Univ. Ferrara Sez. Ⅶ (N.S.), 41 (1995), 73-84.
|
[4]
|
A. V. Chechkin, R. Gorenflo, I. M. Sokolov and V. Y. Gonchar, Distributed order time fractional diffusion equation, Fract. Calc. Appl. Anal., 6 (2003), 259-279.
|
[5]
|
M. H. Chen and W. H. Deng, Fourth order difference approximations for space Riemann-Liouville derivatives based on weighted and shifted Lubich difference operators, Commu. Comput. Phys., 16 (2014), 516-540.
doi: 10.4208/cicp.120713.280214a.
|
[6]
|
K. Diethelm and N. J. Ford, Numerical analysis for distributed-order differential equations, J. Comput. Appl. Math., 225 (2009), 96-104.
doi: 10.1016/j.cam.2008.07.018.
|
[7]
|
H. F. Ding and C. P. Li, High-order numerical algorithms for Riesz derivatives via constructing new generating functions, J. Sci. Comput., 71 (2017), 759-784.
doi: 10.1007/s10915-016-0317-3.
|
[8]
|
Y. W. Du, Y. Liu, H. Li, Z. C. Fang and S. He, Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation, J. Comput. Phys., 344 (2017), 108-126.
doi: 10.1016/j.jcp.2017.04.078.
|
[9]
|
W. Feller, An Introduction to Probability Theory and its Applications. Vol. II, Second edition, John Wiley & Sons, Inc., New York-London-Sydney, 1971.
|
[10]
|
L. B. Feng, F. W. Liu and I. Turner, Finite difference/finite element method for a novel 2D multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains, Commu. Nonlinear Sci. Numer. Simulat., 70 (2019), 354-371.
doi: 10.1016/j.cnsns.2018.10.016.
|
[11]
|
G.-H. Gao, H.-W. Sun and Z.-Z. Sun, Some high-order difference schemes for the distributed-order differential equations, J. Comput. Phys., 298 (2015), 337-359.
doi: 10.1016/j.jcp.2015.05.047.
|
[12]
|
P. Gatto and J. S. Hesthaven, Numerical approximation of the fractional Laplacian via $hp$-finite elements, with an application to image denoising, J. Sci. Comput., 65 (2015), 249-270.
doi: 10.1007/s10915-014-9959-1.
|
[13]
|
S. M. Guo, L. Q. Mei, Z. Q. Zhang and Y. T. Jiang, Finite difference/spectral-Galerkin method for a two-dimensional distributed-order time-space fractional reaction-diffusion equation, Appl. Math. Letters, 85 (2018), 157-163.
doi: 10.1016/j.aml.2018.06.005.
|
[14]
|
J. H. Jia and H. Wang, A fast finite difference method for distributed-order space-fractional partial differential equations on convex domains, Comput. Math. Appl., 75 (2018), 2031-2043.
doi: 10.1016/j.camwa.2017.09.003.
|
[15]
|
B. T. Jin, B. Y. Li and Z. Zhou, Correction of high-order BDF convolution quadrature for fractional evolution equations, SIAM J. Sci. Comput., 39 (2017), A3129–A3152.
doi: 10.1137/17M1118816.
|
[16]
|
B. T. Jin, R. Lazarov, D. Sheen and Z. Zhou, Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data, Fract. Calc. Appl. Anal., 19 (2016), 69-93.
doi: 10.1515/fca-2016-0005.
|
[17]
|
A. N. Kochubei, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl., 340 (2008), 252-281.
doi: 10.1016/j.jmaa.2007.08.024.
|
[18]
|
J. C. Li, Y. Q. Huang and Y. P. Lin, Developing finite element methods for Maxwell's equations in a Cole-Cole dispersive medium, SIAM J. Sci. Comput., 33 (2011), 3153-3174.
doi: 10.1137/110827624.
|
[19]
|
C. P. Li and F. H. Zeng, Numerical Methods for Fractional Calculus, Chapman & Hall/CRC Numerical Analysis and Scientific Computing, CRC Press, Boca Raton, FL, 2015.
|
[20]
|
D. F. Li, J. W. Zhang and Z. M. Zhang, Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction-subdiffusion equations, J. Sci. Comput., 76 (2018), 848-866.
doi: 10.1007/s10915-018-0642-9.
|
[21]
|
B. J. Li, H. Luo and X. P. Xie, Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data, SIAM J. Numer. Anal., 57 (2019), 779-798.
doi: 10.1137/18M118414X.
|
[22]
|
Z. Y. Li, Y. Luchko and M. Yamamoto, Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations, Fract. Calc. Appl. Anal., 17 (2014), 1114-1136.
doi: 10.2478/s13540-014-0217-x.
|
[23]
|
H.-L. Liao, W. McLean and J. W. Zhang, A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems, SIAM J. Numer. Anal., 57 (2019), 218-237.
doi: 10.1137/16M1175742.
|
[24]
|
Y. Liu, Y.-W. Du, H. Li and J.-F. Wang, A two-grid finite element approximation for a nonlinear time-fractional Cable equation, Nonlinear Dyn., 85 (2016), 2535-2548.
doi: 10.1007/s11071-016-2843-9.
|
[25]
|
Y. Liu, Y. W. Du, H. Li, F. W. Liu and Y. J. Wang, Some second-order $\theta$ schemes combined with finite element method for nonlinear fractional Cable equation, Numer. Algor., 80 (2019), 533-555.
doi: 10.1007/s11075-018-0496-0.
|
[26]
|
Y. Liu, B. Yin, H. Li and Z. Zhang, The unified theory of shifted convolution quadrature for fractional calculus, arXiv: 1908.01136v3.
|
[27]
|
C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal., 17 (1986), 704-719.
doi: 10.1137/0517050.
|
[28]
|
C. Lubich, Convolution quadrature and discretized operational calculus. I, Numer. Math., 52 (1988), 129-145.
doi: 10.1007/BF01398686.
|
[29]
|
Y. Luchko, Boundary value problems for the generalized time-fractional diffusion equation of distributed order, Fract. Calc. Appl. Anal., 12 (2009), 409-422.
|
[30]
|
S. Mashayekhi and M. Razzaghi, Numerical solution of distributed order fractional differential equations by hybrid functions, J. Comput. Phys., 315 (2016), 169-181.
doi: 10.1016/j.jcp.2016.01.041.
|
[31]
|
W. McLean and K. Mustapha, Time-stepping error bounds for fractional diffusion problems with non-smooth initial data, J. Comput. Phys., 293 (2015), 201-217.
doi: 10.1016/j.jcp.2014.08.050.
|
[32]
|
M. M. Meerschaert and H. P. Scheffler, Stochastic model for ultraslow diffusion, Stoch. Proc. Appl., 116 (2006), 1215-1235.
doi: 10.1016/j.spa.2006.01.006.
|
[33]
|
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Physics Reports, 339 (2000), 77 pp.
doi: 10.1016/S0370-1573(00)00070-3.
|
[34]
|
B. P. Moghaddam, J. A. Tenreiro Machado and M. L. Morgado, Numerical approach for a class of distributed order time fractional partial differential equations, Appl. Numer. Math., 136 (2019), 152-162.
doi: 10.1016/j.apnum.2018.09.019.
|
[35]
|
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.
|
[36]
|
A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, Springer-Verlag Italia, Milan, 1998.
|
[37]
|
M. H. Ran and C. J. Zhang, New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order, Appl. Numer. Math., 129 (2018), 58-70.
doi: 10.1016/j.apnum.2018.03.005.
|
[38]
|
J. C. Ren and Z.-Z. Sun, Efficient and stable numerical methods for multi-term time fractional sub-diffusion equations, E. Asian J. Appl. Math., 4 (2014), 242-266.
doi: 10.4208/eajam.181113.280514a.
|
[39]
|
Y. H. Shi, F. Liu, Y. M. Zhao, F. L. Wang and I. Turner, An unstructured mesh finite element method for solving the multi-term time fractional and Riesz space distributed-order wave equation on an irregular convex domain, Appl. Math. Model., 73 (2019), 615-636.
doi: 10.1016/j.apm.2019.04.023.
|
[40]
|
M. Stynes, E. O'Riordan and J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057-1079.
doi: 10.1137/16M1082329.
|
[41]
|
P. D. Wang and C. M. Huang, An implicit midpoint difference scheme for the fractional Ginzburg-Landau equation, J. Comput. Phys., 312 (2016), 31-49.
doi: 10.1016/j.jcp.2016.02.018.
|
[42]
|
Y. B. Yan, M. Khan and N. J. Ford, An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data, SIAM J. Numer. Anal., 56 (2018), 210-227.
doi: 10.1137/16M1094257.
|
[43]
|
B. L. Yin, Y. Liu, H. Li and S. He, Fast algorithm based on TT-M FE system for space fractional Allen-Cahn equations with smooth and non-smooth solutions, J. Comput. Phys., 379 (2019), 351-372.
doi: 10.1016/j.jcp.2018.12.004.
|
[44]
|
B. Yin, Y. Liu, H. Li and Z. Zhang, Finite element methods based on two families of second-order numerical formulas for the fractional Cable model with smooth solutions, arXiv: 1911.08166v1.
|
[45]
|
B. L. Yin, Y. Liu and H. Li, A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations, Appl. Math. Comput., 368 (2020), 124799, 20 pp.
doi: 10.1016/j.amc.2019.124799.
|
[46]
|
B. Yin, Y. Liu, H. Li and Z. Zhang, Two families of novel second-order fractional numerical formulas and their applications to fractional differential equations, preprint, arXiv: 1906.01242v1.
|
[47]
|
F. H. Zeng, Z. Q. Zhang and G. E. Karniadakis, Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions, Comput. Methods Appl. Mech. Eng., 327 (2017), 478-502.
doi: 10.1016/j.cma.2017.08.029.
|
[48]
|
H. Zhang, F. W. Liu, X. Y. Jiang, F. H. Zeng and I. Turner, A Crank-Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation, Comput. Math. Appl., 76 (2018), 2460-2476.
doi: 10.1016/j.camwa.2018.08.042.
|
[49]
|
M. L. Zheng, F. W. Liu, I. Turner and V. Anh, A novel high order space-time spectral method for the time fractional Fokker-Planck equation, SIAM J. Sci. Comput., 37 (2015), A701–A724.
doi: 10.1137/140980545.
|
[50]
|
X. C. Zheng, H. Liu, H. Wang and H. F. Fu, An efficient finite volume method for nonlinear distributed-order space-fractional diffusion equations in three space dimensions, J. Sci. Comput., 80 (2019), 1395–1418, https://doi.org/10.1007/s10915-019-00979-2.
doi: 10.1007/s10915-019-00979-2.
|