• Previous Article
    Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families
  • DCDS-B Home
  • This Issue
  • Next Article
    Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures
March  2021, 26(3): 1499-1529. doi: 10.3934/dcdsb.2020170

On discrete-time semi-Markov processes

1. 

Faculty of Computing, Engineering and Science, University of South Wales, UK

2. 

Department of Mathematics "G. Peano", University of Torino, Italy

*Corresponding author: Costantino Ricciuti

Received  September 2019 Revised  February 2020 Published  March 2021 Early access  May 2020

In the last years, several authors studied a class of continuous-time semi-Markov processes obtained by time-changing Markov processes by hitting times of independent subordinators. Such processes are governed by integro-differential convolution equations of generalized fractional type. The aim of this paper is to develop a discrete-time counterpart of such a theory and to show relationships and differences with respect to the continuous time case. We present a class of discrete-time semi-Markov chains which can be constructed as time-changed Markov chains and we obtain the related governing convolution type equations. Such processes converge weakly to those in continuous time under suitable scaling limits.

Citation: Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170
References:
[1]

D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511809781.

[2]

V. S. Barbu and N. Limnios, Semi-Markov Chains and Hidden Semi-Markov Models Toward Applications, Lecture Notes in Statistics, 191, Springer, New York, 2008. doi: 10.1007/978-0-387-73173-5.

[3]

P. Becker-KernM. M. Meerschaert and H.-P. Scheffler, Limit theorems for coupled continuous-time random walks, Ann. Probab., 32 (2004), 730-756.  doi: 10.1214/aop/1079021462.

[4]

L. Beghin, Fractional relaxation equations and Brownian crossing probabilities of a random boundary, Adv. in Appl. Probab., 44 (2012), 479-505.  doi: 10.1017/S0001867800005693.

[5]

L. Beghin and E. Orsingher, Fractional Poisson processes and related planar random motions, Electron. J. Probab., 14 (2009), 1790-1827.  doi: 10.1214/EJP.v14-675.

[6]

L. Beghin and E. Orsingher, Poisson-type processes governed by fractional and higher-order recursive differential equations, Electron. J. Probab., 15 (2010), 684-709.  doi: 10.1214/EJP.v15-762.

[7]

L. Beghin and C. Ricciuti, Time-inhomogeneous fractional Poisson processes defined by the multistable subordinator, Stoch. Anal. Appl., 37 (2019), 171-188.  doi: 10.1080/07362994.2018.1548970.

[8]

J. Bertoin, Subordinators: Examples and Applications, in Lectures on Probability Theory and Statistics, Lectures Notes in Math., 1717, Springer, Berlin, 1999, 1–91. doi: 10.1007/978-3-540-48115-7_1.

[9]

P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968.

[10]

N. H. Bingham, Limit theorems for occupation times of Markov processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 17 (1971), 1-22.  doi: 10.1007/BF00538470.

[11]

N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Encyclopedia of Mathematics and its Applications, 27, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9780511721434.

[12]

D. Buraczewski, E. Damek and T. Mikosch, Stochastic Models with Power-Law Tails, Springer Series in Operations Research and Financial Engineering, Springer, Cham, 2016. doi: 10.1007/978-3-319-29679-1.

[13]

E. Çinlar, Markov additive processes and semi-regeneration, in Proceedings of the Fifth Conference on Probability Theory, Editura Acad. R. S. R., Bucharest, 1977, 33-49.

[14]

D. R. Cox, Renewal Theory, Methuen & Co. Ltd., London; John Wiley & Sons, Inc., New York, 1962.

[15]

L. Devroye, A triptych of discrete distributions related to the stable law, Statist. Probab. Lett., 18 (1993), 349-351.  doi: 10.1016/0167-7152(93)90027-G.

[16]

M. D'Ovidio, Wright functions governed by fractional directional derivatives and fractional advection diffusion equations, Methods Appl. Anal., 22 (2015), 1-36.  doi: 10.4310/MAA.2015.v22.n1.a1.

[17]

W. Feller, On semi-Markov processes, Proc. Nat. Acad. Sci. U.S.A., 51 (1964), 653-659.  doi: 10.1073/pnas.51.4.653.

[18]

R. GarraE. Orsingher and F. Polito, State-dependent fractional point processes, J. Appl. Probab., 52 (2015), 18-36.  doi: 10.1239/jap/1429282604.

[19]

R. GarraA. GiustiF. Mainardi and G. Pagnini, Fractional relaxation with time-varying coefficient, Fract. Calc. Appl. Anal., 17 (2014), 424-439.  doi: 10.2478/s13540-014-0178-0.

[20]

N. Georgiou, I. Z. Kiss and E. Scalas, Solvable non-Markovian dynamic network, Phys. Rev. E (3), 92 (2015), 9pp. doi: 10.1103/PhysRevE.92.042801.

[21]

B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley Educational Publishers Inc., Cambridge, Mass., 1954.

[22]

I. I. Gihman and A. V. Skorohod, The Theory of Stochastic Processes. II, der Mathematischen Wissenschaften, Band 218, Springer-Verlag, New York-Heidelberg, 1975.

[23]

C. W. J. Granger and R. Joyeux, An introduction to long-memory time series models and fractional differencing, J. Time Ser. Anal., 1 (1980), 15-29.  doi: 10.1111/j.1467-9892.1980.tb00297.x.

[24]

A. Gut, Probability: A Graduate Course, Springer Texts in Statistics, 75, Springer, New York, 2013. doi: 10.1007/978-1-4614-4708-5.

[25]

M. E. Hernández-Hernández and V. N. Kolokoltsov, Probabilistic solutions to nonlinear fractional differential equations of generalized Caputo and Riemann–Liouville type, Stochastics, 90 (2018), 224-255.  doi: 10.1080/17442508.2017.1334059.

[26]

M. E. Hernández-HernándezV. N. Kolokoltsov and L. Toniazzi, Generalized fractional evolutions equations of Caputo type, Chaos Solitons Fractals, 102 (2017), 184-196.  doi: 10.1016/j.chaos.2017.05.005.

[27]

J. Jacod, Systèmes régenératifs and processus semi-markoviens, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 31 (1974/75), 1-23.  doi: 10.1007/BF00538712.

[28]

V. N. Kolokol'tsov, Generalized continuous-time random walks, subordination by hitting times, and fractional dynamics, Theory Probab. Appl., 53 (2009), 594-609.  doi: 10.1137/S0040585X97983857.

[29]

V. N. Kolokoltsov, Markov Processes, Semigroups and Generators, De Gruyter Studies in Mathematics, 38, Walter de Gruyter & Co., Berlin, 2011. doi: 10.1515/9783110250114.

[30]

V. Korolyuk and A. Swishchuk, Semi-Markov Random Evolutions, Mathematics and its Applications, 308, Kluwer Academic Publishers, Dordrecht, 1995. doi: 10.1007/978-94-011-1010-5.

[31]

A. KumarE. Nane and P. Vellaisamy, Time-changed Poisson processes, Statist. Probab. Lett., 81 (2011), 1899-1910.  doi: 10.1016/j.spl.2011.08.002.

[32]

T. G. Kurtz, Comparison of semi-Markov and Markov processes, Ann. Math. Statist., 42 (1971), 991-1002.  doi: 10.1214/aoms/1177693327.

[33]

N. N. Leonenko, M. M. Meerschaert, R. L. Shilling and A. Sikorskii, Correlation structure of time-changed Lévy processes, Commun. Appl. Ind. Math., 6 (2014), 22pp. doi: 10.1685/journal.caim.483.

[34]

N. N. LeonenkoE. Scalas and M. Trinh, The fractional non-homogeneous Poisson process, Statist. Probab. Lett., 120 (2017), 147-156.  doi: 10.1016/j.spl.2016.09.024.

[35]

P. Levy, Processus semi-markoviens, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, Erven P. Noordhoff N. V., Groningen; North-Holland Publishing Co., Amsterdam, 1956,416–426.

[36]

F. MainardiR. Gorenflo and E. Scalas, A fractional generalization of the Poisson process, Vietnam J. Math., 32 (2007), 53-64. 

[37]

M. M. Meerschaert and H.-P. Scheffler, Limit theorems for continuous-time random walks with infinite mean waiting times, J. Appl. Probab., 41 (2004), 623-638.  doi: 10.1239/jap/1091543414.

[38]

M. M. Meerschaert and H.-P. Scheffler, Triangular array limits for continuous time random walks, Stochastic Process. Appl., 118 (2008), 1606-1633.  doi: 10.1016/j.spa.2007.10.005.

[39]

M. M. MeerschaertE. Nane and P. Vellaisamy, The fractional Poisson process and the inverse stable subordinator, Electron. J. Probab., 16 (2011), 1600-1620.  doi: 10.1214/EJP.v16-920.

[40]

M. M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Calculus, De Gruyter Studies in Mathematics, 43, Walter de Gruyter & Co., Berlin, 2012. doi: 10.1515/9783110258165.

[41]

M. M. Meerschaert and P. Straka, Semi-Markov approach to continuous time random walk limit processes, Ann. Probab., 42 (2014), 1699-1723.  doi: 10.1214/13-AOP905.

[42]

M. M. Meerschaert and B. Toaldo, Relaxation patterns and semi-Markov dynamics, Stochastic Process. Appl., 129 (2019), 2850-2879.  doi: 10.1016/j.spa.2018.08.004.

[43]

T. Michelitsch, G. Maugin, S. Derogar and A. Nowakowski, Sur une généralisation de l'opérateur fractionnaire, preprint, arXiv: 1111.1898v1.

[44]

J. R. Norris, Markov Chains, Cambridge Series in Statistical and Probabilistic Mathematics, 2, Cambridge University Press, Cambridge, 1998. doi: 10.1017/CBO9780511810633.

[45]

E. Orsingher and F. Polito, Fractional pure birth processes, Bernoulli, 16 (2010), 858-881.  doi: 10.3150/09-BEJ235.

[46]

E. Orsingher and F. Polito, On a fractional linear birth-death process, Bernoulli, 17 (2011), 114-137.  doi: 10.3150/10-BEJ263.

[47]

E. OrsingherF. Polito and L. Sakhno, Fractional non-linear, linear and sub-linear death processes, J. Stat. Phys., 141 (2010), 68-93.  doi: 10.1007/s10955-010-0045-2.

[48]

E. OrsingherC. Ricciuti and B. Toaldo, Time-inhomogeneous jump processes and variable order operators, Potential Anal., 45 (2016), 435-461.  doi: 10.1007/s11118-016-9551-4.

[49]

E. OrsingherC. Ricciuti and B. Toaldo, On semi-Markov processes and their Kolmogorov's integro-differential equations, J. Funct. Anal., 275 (2018), 830-868.  doi: 10.1016/j.jfa.2018.02.011.

[50]

A. PachonF. Polito and L. Sacerdote, Random graphs associated to some discrete and continuous time preferential attachment models, J. Stat. Phys., 162 (2016), 1608-1638.  doi: 10.1007/s10955-016-1462-7.

[51]

A. PachonL. Sacerdote and S. Yang, Scale-free behaviour of networks with the copresence of preferential and uniform attachment rules, Phys. D, 371 (2018), 1-12.  doi: 10.1016/j.physd.2018.01.005.

[52]

R. N. Pillai and K. Jayakumar, Discrete Mittag–Leffler distributions, Statist. Probab. Lett., 23 (1995), 271-274.  doi: 10.1016/0167-7152(94)00124-Q.

[53]

R. Pyke, Markov renewal processes with finitely many states, Ann. Math. Statist., 32 (1961), 1243-1259.  doi: 10.1214/aoms/1177704864.

[54]

R. Pyke, Markov renewal processes with infinitely many states, Ann. Math. Statist., 35 (1964), 1746-1764. 

[55]

M. Raberto, F. Rapallo and E. Scalas, Semi-Markov graph dynamics, PLoS ONE, 6 (2011). doi: 10.1371/journal.pone.0023370.

[56]

C. Ricciuti and B. Toaldo, Semi-Markov models and motion in heterogeneous media, J. Stat. Phys., 169 (2017), 340-361.  doi: 10.1007/s10955-017-1871-2.

[57]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.

[58]

K. Sato, Lèvy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, 68, Cambridge University Press, Cambridge, 1999.

[59]

R. L. Schilling, R. Song and Z. Vondraček, Bernstein Functions. Theory and Applications, De Gruyter Studies in Mathematics, 37, Walter de Gruyter & Co., Berlin, 2010. doi: 10.1515/9783110215311.

[60]

A. V. Skorohod, Limit theorems for stochastic processes, Teor. Veroyatnost. i Primenen., 1 (1956), 289-319.  doi: 10.1137/1101022.

[61]

A. V. Skorohod, Limit theorems for stochastic processes with independent increments, Teor. Veroyatnost. i Primenen., 2 (1957), 145-177. 

[62]

W. L. Smith, Regenerative stochastic processes, Proc. Roy. Soc. London Ser. A, 232 (1955), 6-31.  doi: 10.1098/rspa.1955.0198.

[63]

F. W. Steutel and K. van Harn, Infinite Divisibility of Probability Distributions on the Real Line, Monographs and Textbooks in Pure and Applied Mathematics, 259, Marcel Dekker, Inc., New York, 2004.

[64]

P. Straka and B. I. Henry, Lagging and leading coupled continuous time random walks, renewal times and their joint limits, Stochastic Process. Appl., 121 (2011), 324-336.  doi: 10.1016/j.spa.2010.10.003.

[65]

B. Toaldo, Lévy mixing related to distributed order calculus, subordinators and slow diffusions, J. Math. Anal. Appl., 430 (2015), 1009-1036.  doi: 10.1016/j.jmaa.2015.05.024.

[66]

W. Whitt, Some useful functions for functional limit theorems, Math. Oper. Res., 5 (1980), 67-85.  doi: 10.1287/moor.5.1.67.

[67]

W. Whitt, Stochastic-Process Limits, Springer Series in Operations Research, Springer-Verlag, New York, 2002. doi: 10.1007/b97479.

show all references

References:
[1]

D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511809781.

[2]

V. S. Barbu and N. Limnios, Semi-Markov Chains and Hidden Semi-Markov Models Toward Applications, Lecture Notes in Statistics, 191, Springer, New York, 2008. doi: 10.1007/978-0-387-73173-5.

[3]

P. Becker-KernM. M. Meerschaert and H.-P. Scheffler, Limit theorems for coupled continuous-time random walks, Ann. Probab., 32 (2004), 730-756.  doi: 10.1214/aop/1079021462.

[4]

L. Beghin, Fractional relaxation equations and Brownian crossing probabilities of a random boundary, Adv. in Appl. Probab., 44 (2012), 479-505.  doi: 10.1017/S0001867800005693.

[5]

L. Beghin and E. Orsingher, Fractional Poisson processes and related planar random motions, Electron. J. Probab., 14 (2009), 1790-1827.  doi: 10.1214/EJP.v14-675.

[6]

L. Beghin and E. Orsingher, Poisson-type processes governed by fractional and higher-order recursive differential equations, Electron. J. Probab., 15 (2010), 684-709.  doi: 10.1214/EJP.v15-762.

[7]

L. Beghin and C. Ricciuti, Time-inhomogeneous fractional Poisson processes defined by the multistable subordinator, Stoch. Anal. Appl., 37 (2019), 171-188.  doi: 10.1080/07362994.2018.1548970.

[8]

J. Bertoin, Subordinators: Examples and Applications, in Lectures on Probability Theory and Statistics, Lectures Notes in Math., 1717, Springer, Berlin, 1999, 1–91. doi: 10.1007/978-3-540-48115-7_1.

[9]

P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968.

[10]

N. H. Bingham, Limit theorems for occupation times of Markov processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 17 (1971), 1-22.  doi: 10.1007/BF00538470.

[11]

N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Encyclopedia of Mathematics and its Applications, 27, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9780511721434.

[12]

D. Buraczewski, E. Damek and T. Mikosch, Stochastic Models with Power-Law Tails, Springer Series in Operations Research and Financial Engineering, Springer, Cham, 2016. doi: 10.1007/978-3-319-29679-1.

[13]

E. Çinlar, Markov additive processes and semi-regeneration, in Proceedings of the Fifth Conference on Probability Theory, Editura Acad. R. S. R., Bucharest, 1977, 33-49.

[14]

D. R. Cox, Renewal Theory, Methuen & Co. Ltd., London; John Wiley & Sons, Inc., New York, 1962.

[15]

L. Devroye, A triptych of discrete distributions related to the stable law, Statist. Probab. Lett., 18 (1993), 349-351.  doi: 10.1016/0167-7152(93)90027-G.

[16]

M. D'Ovidio, Wright functions governed by fractional directional derivatives and fractional advection diffusion equations, Methods Appl. Anal., 22 (2015), 1-36.  doi: 10.4310/MAA.2015.v22.n1.a1.

[17]

W. Feller, On semi-Markov processes, Proc. Nat. Acad. Sci. U.S.A., 51 (1964), 653-659.  doi: 10.1073/pnas.51.4.653.

[18]

R. GarraE. Orsingher and F. Polito, State-dependent fractional point processes, J. Appl. Probab., 52 (2015), 18-36.  doi: 10.1239/jap/1429282604.

[19]

R. GarraA. GiustiF. Mainardi and G. Pagnini, Fractional relaxation with time-varying coefficient, Fract. Calc. Appl. Anal., 17 (2014), 424-439.  doi: 10.2478/s13540-014-0178-0.

[20]

N. Georgiou, I. Z. Kiss and E. Scalas, Solvable non-Markovian dynamic network, Phys. Rev. E (3), 92 (2015), 9pp. doi: 10.1103/PhysRevE.92.042801.

[21]

B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley Educational Publishers Inc., Cambridge, Mass., 1954.

[22]

I. I. Gihman and A. V. Skorohod, The Theory of Stochastic Processes. II, der Mathematischen Wissenschaften, Band 218, Springer-Verlag, New York-Heidelberg, 1975.

[23]

C. W. J. Granger and R. Joyeux, An introduction to long-memory time series models and fractional differencing, J. Time Ser. Anal., 1 (1980), 15-29.  doi: 10.1111/j.1467-9892.1980.tb00297.x.

[24]

A. Gut, Probability: A Graduate Course, Springer Texts in Statistics, 75, Springer, New York, 2013. doi: 10.1007/978-1-4614-4708-5.

[25]

M. E. Hernández-Hernández and V. N. Kolokoltsov, Probabilistic solutions to nonlinear fractional differential equations of generalized Caputo and Riemann–Liouville type, Stochastics, 90 (2018), 224-255.  doi: 10.1080/17442508.2017.1334059.

[26]

M. E. Hernández-HernándezV. N. Kolokoltsov and L. Toniazzi, Generalized fractional evolutions equations of Caputo type, Chaos Solitons Fractals, 102 (2017), 184-196.  doi: 10.1016/j.chaos.2017.05.005.

[27]

J. Jacod, Systèmes régenératifs and processus semi-markoviens, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 31 (1974/75), 1-23.  doi: 10.1007/BF00538712.

[28]

V. N. Kolokol'tsov, Generalized continuous-time random walks, subordination by hitting times, and fractional dynamics, Theory Probab. Appl., 53 (2009), 594-609.  doi: 10.1137/S0040585X97983857.

[29]

V. N. Kolokoltsov, Markov Processes, Semigroups and Generators, De Gruyter Studies in Mathematics, 38, Walter de Gruyter & Co., Berlin, 2011. doi: 10.1515/9783110250114.

[30]

V. Korolyuk and A. Swishchuk, Semi-Markov Random Evolutions, Mathematics and its Applications, 308, Kluwer Academic Publishers, Dordrecht, 1995. doi: 10.1007/978-94-011-1010-5.

[31]

A. KumarE. Nane and P. Vellaisamy, Time-changed Poisson processes, Statist. Probab. Lett., 81 (2011), 1899-1910.  doi: 10.1016/j.spl.2011.08.002.

[32]

T. G. Kurtz, Comparison of semi-Markov and Markov processes, Ann. Math. Statist., 42 (1971), 991-1002.  doi: 10.1214/aoms/1177693327.

[33]

N. N. Leonenko, M. M. Meerschaert, R. L. Shilling and A. Sikorskii, Correlation structure of time-changed Lévy processes, Commun. Appl. Ind. Math., 6 (2014), 22pp. doi: 10.1685/journal.caim.483.

[34]

N. N. LeonenkoE. Scalas and M. Trinh, The fractional non-homogeneous Poisson process, Statist. Probab. Lett., 120 (2017), 147-156.  doi: 10.1016/j.spl.2016.09.024.

[35]

P. Levy, Processus semi-markoviens, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, Erven P. Noordhoff N. V., Groningen; North-Holland Publishing Co., Amsterdam, 1956,416–426.

[36]

F. MainardiR. Gorenflo and E. Scalas, A fractional generalization of the Poisson process, Vietnam J. Math., 32 (2007), 53-64. 

[37]

M. M. Meerschaert and H.-P. Scheffler, Limit theorems for continuous-time random walks with infinite mean waiting times, J. Appl. Probab., 41 (2004), 623-638.  doi: 10.1239/jap/1091543414.

[38]

M. M. Meerschaert and H.-P. Scheffler, Triangular array limits for continuous time random walks, Stochastic Process. Appl., 118 (2008), 1606-1633.  doi: 10.1016/j.spa.2007.10.005.

[39]

M. M. MeerschaertE. Nane and P. Vellaisamy, The fractional Poisson process and the inverse stable subordinator, Electron. J. Probab., 16 (2011), 1600-1620.  doi: 10.1214/EJP.v16-920.

[40]

M. M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Calculus, De Gruyter Studies in Mathematics, 43, Walter de Gruyter & Co., Berlin, 2012. doi: 10.1515/9783110258165.

[41]

M. M. Meerschaert and P. Straka, Semi-Markov approach to continuous time random walk limit processes, Ann. Probab., 42 (2014), 1699-1723.  doi: 10.1214/13-AOP905.

[42]

M. M. Meerschaert and B. Toaldo, Relaxation patterns and semi-Markov dynamics, Stochastic Process. Appl., 129 (2019), 2850-2879.  doi: 10.1016/j.spa.2018.08.004.

[43]

T. Michelitsch, G. Maugin, S. Derogar and A. Nowakowski, Sur une généralisation de l'opérateur fractionnaire, preprint, arXiv: 1111.1898v1.

[44]

J. R. Norris, Markov Chains, Cambridge Series in Statistical and Probabilistic Mathematics, 2, Cambridge University Press, Cambridge, 1998. doi: 10.1017/CBO9780511810633.

[45]

E. Orsingher and F. Polito, Fractional pure birth processes, Bernoulli, 16 (2010), 858-881.  doi: 10.3150/09-BEJ235.

[46]

E. Orsingher and F. Polito, On a fractional linear birth-death process, Bernoulli, 17 (2011), 114-137.  doi: 10.3150/10-BEJ263.

[47]

E. OrsingherF. Polito and L. Sakhno, Fractional non-linear, linear and sub-linear death processes, J. Stat. Phys., 141 (2010), 68-93.  doi: 10.1007/s10955-010-0045-2.

[48]

E. OrsingherC. Ricciuti and B. Toaldo, Time-inhomogeneous jump processes and variable order operators, Potential Anal., 45 (2016), 435-461.  doi: 10.1007/s11118-016-9551-4.

[49]

E. OrsingherC. Ricciuti and B. Toaldo, On semi-Markov processes and their Kolmogorov's integro-differential equations, J. Funct. Anal., 275 (2018), 830-868.  doi: 10.1016/j.jfa.2018.02.011.

[50]

A. PachonF. Polito and L. Sacerdote, Random graphs associated to some discrete and continuous time preferential attachment models, J. Stat. Phys., 162 (2016), 1608-1638.  doi: 10.1007/s10955-016-1462-7.

[51]

A. PachonL. Sacerdote and S. Yang, Scale-free behaviour of networks with the copresence of preferential and uniform attachment rules, Phys. D, 371 (2018), 1-12.  doi: 10.1016/j.physd.2018.01.005.

[52]

R. N. Pillai and K. Jayakumar, Discrete Mittag–Leffler distributions, Statist. Probab. Lett., 23 (1995), 271-274.  doi: 10.1016/0167-7152(94)00124-Q.

[53]

R. Pyke, Markov renewal processes with finitely many states, Ann. Math. Statist., 32 (1961), 1243-1259.  doi: 10.1214/aoms/1177704864.

[54]

R. Pyke, Markov renewal processes with infinitely many states, Ann. Math. Statist., 35 (1964), 1746-1764. 

[55]

M. Raberto, F. Rapallo and E. Scalas, Semi-Markov graph dynamics, PLoS ONE, 6 (2011). doi: 10.1371/journal.pone.0023370.

[56]

C. Ricciuti and B. Toaldo, Semi-Markov models and motion in heterogeneous media, J. Stat. Phys., 169 (2017), 340-361.  doi: 10.1007/s10955-017-1871-2.

[57]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.

[58]

K. Sato, Lèvy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, 68, Cambridge University Press, Cambridge, 1999.

[59]

R. L. Schilling, R. Song and Z. Vondraček, Bernstein Functions. Theory and Applications, De Gruyter Studies in Mathematics, 37, Walter de Gruyter & Co., Berlin, 2010. doi: 10.1515/9783110215311.

[60]

A. V. Skorohod, Limit theorems for stochastic processes, Teor. Veroyatnost. i Primenen., 1 (1956), 289-319.  doi: 10.1137/1101022.

[61]

A. V. Skorohod, Limit theorems for stochastic processes with independent increments, Teor. Veroyatnost. i Primenen., 2 (1957), 145-177. 

[62]

W. L. Smith, Regenerative stochastic processes, Proc. Roy. Soc. London Ser. A, 232 (1955), 6-31.  doi: 10.1098/rspa.1955.0198.

[63]

F. W. Steutel and K. van Harn, Infinite Divisibility of Probability Distributions on the Real Line, Monographs and Textbooks in Pure and Applied Mathematics, 259, Marcel Dekker, Inc., New York, 2004.

[64]

P. Straka and B. I. Henry, Lagging and leading coupled continuous time random walks, renewal times and their joint limits, Stochastic Process. Appl., 121 (2011), 324-336.  doi: 10.1016/j.spa.2010.10.003.

[65]

B. Toaldo, Lévy mixing related to distributed order calculus, subordinators and slow diffusions, J. Math. Anal. Appl., 430 (2015), 1009-1036.  doi: 10.1016/j.jmaa.2015.05.024.

[66]

W. Whitt, Some useful functions for functional limit theorems, Math. Oper. Res., 5 (1980), 67-85.  doi: 10.1287/moor.5.1.67.

[67]

W. Whitt, Stochastic-Process Limits, Springer Series in Operations Research, Springer-Verlag, New York, 2002. doi: 10.1007/b97479.

[1]

Yueyuan Zhang, Yanyan Yin, Fei Liu. Robust observer-based control for discrete-time semi-Markov jump systems with actuator saturation. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3013-3026. doi: 10.3934/jimo.2020105

[2]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[3]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial and Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[4]

Jaydeep Swarnakar. Discrete-time realization of fractional-order proportional integral controller for a class of fractional-order system. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 309-320. doi: 10.3934/naco.2021007

[5]

Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023

[6]

Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021, 8 (2) : 153-163. doi: 10.3934/jcd.2021007

[7]

Xi Zhu, Meixia Li, Chunfa Li. Consensus in discrete-time multi-agent systems with uncertain topologies and random delays governed by a Markov chain. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4535-4551. doi: 10.3934/dcdsb.2020111

[8]

Michael C. Fu, Bingqing Li, Rongwen Wu, Tianqi Zhang. Option pricing under a discrete-time Markov switching stochastic volatility with co-jump model. Frontiers of Mathematical Finance, 2022, 1 (1) : 137-160. doi: 10.3934/fmf.2021005

[9]

Samuel N. Cohen. Uncertainty and filtering of hidden Markov models in discrete time. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 4-. doi: 10.1186/s41546-020-00046-x

[10]

Baoyin Xun, Kam C. Yuen, Kaiyong Wang. The finite-time ruin probability of a risk model with a general counting process and stochastic return. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1541-1556. doi: 10.3934/jimo.2021032

[11]

Qiuli Liu, Xiaolong Zou. A risk minimization problem for finite horizon semi-Markov decision processes with loss rates. Journal of Dynamics and Games, 2018, 5 (2) : 143-163. doi: 10.3934/jdg.2018009

[12]

Eduardo Liz. A new flexible discrete-time model for stable populations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2487-2498. doi: 10.3934/dcdsb.2018066

[13]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264

[14]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

[15]

Ciprian Preda. Discrete-time theorems for the dichotomy of one-parameter semigroups. Communications on Pure and Applied Analysis, 2008, 7 (2) : 457-463. doi: 10.3934/cpaa.2008.7.457

[16]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[17]

Lih-Ing W. Roeger. Dynamically consistent discrete-time SI and SIS epidemic models. Conference Publications, 2013, 2013 (special) : 653-662. doi: 10.3934/proc.2013.2013.653

[18]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[19]

Veena Goswami, Gopinath Panda. Optimal information policy in discrete-time queues with strategic customers. Journal of Industrial and Management Optimization, 2019, 15 (2) : 689-703. doi: 10.3934/jimo.2018065

[20]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (305)
  • HTML views (345)
  • Cited by (1)

[Back to Top]