March  2021, 26(3): 1531-1547. doi: 10.3934/dcdsb.2020171

Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families

Department of Mathematics, Northwest Normal University, Lanzhou 730070, China

* Corresponding author: Pengyu Chen

Received  September 2019 Revised  December 2019 Published  May 2020

Fund Project: Research supported by National Natural Science Foundations of China (No. 11501455, No. 11661071), Science Research Project for Colleges and Universities of Gansu Province (No. 2019B-047), Project of NWNU-LKQN2019-3, Project of NWNU-LKQN2019-13 and China Scholarship Council (No. 201908625016)

This paper investigates the Cauchy problem to a class of stochastic non-autonomous evolution equations of parabolic type governed by noncompact evolution families in Hilbert spaces. Combining the theory of evolution families, the fixed point theorem with respect to convex-power condensing operator and a new estimation technique of the measure of noncompactness, we established some new existence results of mild solutions under the situation that the nonlinear function satisfy some appropriate local growth condition and a noncompactness measure condition. Our results generalize and improve some previous results on this topic, since the strong restriction on the constants in the condition of noncompactness measure is completely deleted, and also the condition of uniformly continuity of the nonlinearity is not required. At last, as samples of applications, we consider the Cauchy problem to a class of stochastic non-autonomous partial differential equation of parabolic type.

Citation: Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171
References:
[1]

P. Acquistapace, Evolution operators and strong solutions of abstract linear parabolic equations, Differential Integral Equations, 1 (1988), 433-457.   Google Scholar

[2]

P. Acquistapace and B. Terreni, A unified approach to abstract linear nonautonomous parabolic equations, Rend. Sem. Mat. Univ. Padova, 78 (1987), 47-107.   Google Scholar

[3]

H. Amann, Parabolic evolution equations and nonlinear boundary conditions, J. Differential Equations, 72 (1988), 201-269.  doi: 10.1016/0022-0396(88)90156-8.  Google Scholar

[4]

J. and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, 60, Marcel Dekker, Inc., New York, 1980.  Google Scholar

[5]

J. BaoZ. Hou and C. Yuan, Stability in distribution of mild solutions to stochastic partial differential equations, Proc. Amer. Math. Soc., 138 (2010), 2169-2180.  doi: 10.1090/S0002-9939-10-10230-5.  Google Scholar

[6]

P. Chen and Y. Li, Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions, Results Math., 63 (2013), 731-744.  doi: 10.1007/s00025-012-0230-5.  Google Scholar

[7]

P. ChenY. Li and X. Zhang, On the initial value problem of fractional stochastic evolution equations in Hilbert spaces, Commun. Pure Appl. Anal., 14 (2015), 1817-1840.  doi: 10.3934/cpaa.2015.14.1817.  Google Scholar

[8]

P. ChenX. Zhang and Y. Li, Study on fractional non-autonomous evolution equations with delay, Comput. Math. Appl., 73 (2017), 794-803.  doi: 10.1016/j.camwa.2017.01.009.  Google Scholar

[9]

P. ChenX. Zhang and Y. Li, A blowup alternative result for fractional nonautonomous evolution equation of Volterra type, Commun. Pure Appl. Anal., 17 (2018), 1975-1992.  doi: 10.3934/cpaa.2018094.  Google Scholar

[10]

P. Chen, X. Zhang and Y. Li, Non-autonomous parabolic evolution equations with non-instantaneous impulses governed by noncompact evolution families, J. Fixed Point Theory Appl., 21 (2019), 17pp. doi: 10.1007/s11784-019-0719-6.  Google Scholar

[11]

P. Chen, X. Zhang and Y. Li, Non-autonomous evolution equations of parabolic type with non-instantaneous impulses, Mediterr. J. Math., 16 (2019), 14pp. doi: 10.1007/s00009-019-1384-0.  Google Scholar

[12]

P. ChenX. Zhang and Y. Li, Approximate controllability of non-autonomous evolution system with nonlocal conditions, J. Dyn. Control. Syst., 26 (2020), 1-16.  doi: 10.1007/s10883-018-9423-x.  Google Scholar

[13]

P. ChenX. Zhang and Y. Li, Fractional non-autonomous evolution equation with nonlocal conditions, J. Pseudo-Differ. Oper. Appl., 10 (2019), 955-973.  doi: 10.1007/s11868-018-0257-9.  Google Scholar

[14]

R. F. Curtain and P. L. Falb, Stochastic differential equations in Hilbert space, J. Differential Equations, 10 (1971), 412-430.  doi: 10.1016/0022-0396(71)90004-0.  Google Scholar

[15] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9780511666223.  Google Scholar
[16]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[17]

X. Fu, Existence of solutions for non-autonomous functional evolution equations with nonlocal conditions, Electron. J. Differential Equations, 2012 (2012), 15pp.  Google Scholar

[18]

X. Fu, Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay, Evol. Equ. Control Theory, 6 (2017), 517-534.  doi: 10.3934/eect.2017026.  Google Scholar

[19]

W. Grecksch and C. Tudor, Stochastic Evolution Equations. A Hilbert Space Approach, Mathematical Research, 85, Akademie-Verlag, Berlin, 1995.  Google Scholar

[20]

D. J. Guo, Solutions of nonlinear integrodifferential equations of mixed type in Banach spaces, J. Appl. Math. Simulation, 2 (1989), 1-11.  doi: 10.1155/S1048953389000018.  Google Scholar

[21]

H. P. Heinz, On the behaviour of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 7 (1983), 1351-1371.  doi: 10.1016/0362-546X(83)90006-8.  Google Scholar

[22] V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces, International Series in Nonlinear Mathematics: Theory, Methods and Applications, 2, Pergamon Press, Oxford-New York, 1981.   Google Scholar
[23]

J. LiangJ. H. Liu and T.-J. Xiao, Nonlocal Cauchy problems for nonautonomous evolution equations, Commun. Pure Appl. Anal., 5 (2006), 529-535.  doi: 10.3934/cpaa.2006.5.529.  Google Scholar

[24]

K. Liu, Stability of Infinite Dimensional Stochastic Differential Equations with Applications, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 135, Chapman & Hall/CRC, Boca Raton, FL, 2006. doi: 10.1201/9781420034820.  Google Scholar

[25]

L. LiuF. GuoC. Wu and Y. Wu, Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces, J. Math. Anal. Appl., 309 (2005), 638-649.  doi: 10.1016/j.jmaa.2004.10.069.  Google Scholar

[26]

L. LiuC. Wu and F. Guo, Existence theorems of global solutions of initial value problems for nonlinear integrodifferential equations of mixed type in Banach spaces and applications, Comput. Math. Appl., 47 (2004), 13-22.  doi: 10.1016/S0898-1221(04)90002-8.  Google Scholar

[27]

J. Luo, Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays, J. Math. Anal. Appl., 342 (2008), 753-760.  doi: 10.1016/j.jmaa.2007.11.019.  Google Scholar

[28]

X. Mao, Stochastic Differential Equations and Their Applications, Horwood Publishing Limited, Chichester, 1997.  Google Scholar

[29]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[30]

Y. RenQ. Zhou and L. Chen, Existence, uniqueness and stability of mild solutions for time-dependent stochastic evolution equations with Poisson jumps and infinite delay, J. Optim. Theory Appl., 149 (2011), 315-331.  doi: 10.1007/s10957-010-9792-0.  Google Scholar

[31]

K. Sobczyk, Stochastic Differential Equations. With Applications to Physics and Engineering, Mathematics and its Applications, 40, Kluwer Academic Publishers Group, Dordrecht, 1991. doi: 10.1007/978-94-011-3712-6.  Google Scholar

[32]

J. X. Sun and X. Y. Zhang, A fixed point theorem for convex-power condensing operators and its applications to abstract semilinear evolution equations, Acta Math. Sinica (Chin. Ser.), 48 (2005), 439-446.   Google Scholar

[33]

T. TaniguchiK. Liu and A. Truman, Existence, uniqueness and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces, J. Differential Equations, 181 (2002), 72-91.  doi: 10.1006/jdeq.2001.4073.  Google Scholar

[34]

J. Wang, Approximate mild solutions of fractional stochastic evolution equations in Hilbert spaces, Appl. Math. Comput., 256 (2015), 315-323.  doi: 10.1016/j.amc.2014.12.155.  Google Scholar

[35]

R. N. WangK. Ezzinbi and P.-X. Zhu, Non-autonomous impulsive Cauchy problems of parabolic type involving nonlocal initial conditions, J. Integral Equations Appl., 26 (2014), 275-299.  doi: 10.1216/JIE-2014-26-2-275.  Google Scholar

[36]

R. N. Wang and P. X. Zhu, Non-autonomous evolution inclusions with nonlocal history conditions: Global integral solutions, Nonlinear Anal., 85 (2013) 180–191. doi: 10.1016/j.na.2013.02.026.  Google Scholar

[37]

X. ZhangP. ChenA. Abdelmonem and Y. Li, Fractional stochastic evolution equations with nonlocal initial conditions and noncompact semigroups, Stochastics, 90 (2018), 1005-1022.  doi: 10.1080/17442508.2018.1466885.  Google Scholar

[38]

X. ZhangP. ChenA. Abdelmonem and Y. Li, Mild solution of stochastic partial differential equation with nonlocal conditions and noncompact semigroups, Math. Slovaca, 69 (2019), 111-124.  doi: 10.1515/ms-2017-0207.  Google Scholar

show all references

References:
[1]

P. Acquistapace, Evolution operators and strong solutions of abstract linear parabolic equations, Differential Integral Equations, 1 (1988), 433-457.   Google Scholar

[2]

P. Acquistapace and B. Terreni, A unified approach to abstract linear nonautonomous parabolic equations, Rend. Sem. Mat. Univ. Padova, 78 (1987), 47-107.   Google Scholar

[3]

H. Amann, Parabolic evolution equations and nonlinear boundary conditions, J. Differential Equations, 72 (1988), 201-269.  doi: 10.1016/0022-0396(88)90156-8.  Google Scholar

[4]

J. and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, 60, Marcel Dekker, Inc., New York, 1980.  Google Scholar

[5]

J. BaoZ. Hou and C. Yuan, Stability in distribution of mild solutions to stochastic partial differential equations, Proc. Amer. Math. Soc., 138 (2010), 2169-2180.  doi: 10.1090/S0002-9939-10-10230-5.  Google Scholar

[6]

P. Chen and Y. Li, Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions, Results Math., 63 (2013), 731-744.  doi: 10.1007/s00025-012-0230-5.  Google Scholar

[7]

P. ChenY. Li and X. Zhang, On the initial value problem of fractional stochastic evolution equations in Hilbert spaces, Commun. Pure Appl. Anal., 14 (2015), 1817-1840.  doi: 10.3934/cpaa.2015.14.1817.  Google Scholar

[8]

P. ChenX. Zhang and Y. Li, Study on fractional non-autonomous evolution equations with delay, Comput. Math. Appl., 73 (2017), 794-803.  doi: 10.1016/j.camwa.2017.01.009.  Google Scholar

[9]

P. ChenX. Zhang and Y. Li, A blowup alternative result for fractional nonautonomous evolution equation of Volterra type, Commun. Pure Appl. Anal., 17 (2018), 1975-1992.  doi: 10.3934/cpaa.2018094.  Google Scholar

[10]

P. Chen, X. Zhang and Y. Li, Non-autonomous parabolic evolution equations with non-instantaneous impulses governed by noncompact evolution families, J. Fixed Point Theory Appl., 21 (2019), 17pp. doi: 10.1007/s11784-019-0719-6.  Google Scholar

[11]

P. Chen, X. Zhang and Y. Li, Non-autonomous evolution equations of parabolic type with non-instantaneous impulses, Mediterr. J. Math., 16 (2019), 14pp. doi: 10.1007/s00009-019-1384-0.  Google Scholar

[12]

P. ChenX. Zhang and Y. Li, Approximate controllability of non-autonomous evolution system with nonlocal conditions, J. Dyn. Control. Syst., 26 (2020), 1-16.  doi: 10.1007/s10883-018-9423-x.  Google Scholar

[13]

P. ChenX. Zhang and Y. Li, Fractional non-autonomous evolution equation with nonlocal conditions, J. Pseudo-Differ. Oper. Appl., 10 (2019), 955-973.  doi: 10.1007/s11868-018-0257-9.  Google Scholar

[14]

R. F. Curtain and P. L. Falb, Stochastic differential equations in Hilbert space, J. Differential Equations, 10 (1971), 412-430.  doi: 10.1016/0022-0396(71)90004-0.  Google Scholar

[15] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9780511666223.  Google Scholar
[16]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[17]

X. Fu, Existence of solutions for non-autonomous functional evolution equations with nonlocal conditions, Electron. J. Differential Equations, 2012 (2012), 15pp.  Google Scholar

[18]

X. Fu, Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay, Evol. Equ. Control Theory, 6 (2017), 517-534.  doi: 10.3934/eect.2017026.  Google Scholar

[19]

W. Grecksch and C. Tudor, Stochastic Evolution Equations. A Hilbert Space Approach, Mathematical Research, 85, Akademie-Verlag, Berlin, 1995.  Google Scholar

[20]

D. J. Guo, Solutions of nonlinear integrodifferential equations of mixed type in Banach spaces, J. Appl. Math. Simulation, 2 (1989), 1-11.  doi: 10.1155/S1048953389000018.  Google Scholar

[21]

H. P. Heinz, On the behaviour of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 7 (1983), 1351-1371.  doi: 10.1016/0362-546X(83)90006-8.  Google Scholar

[22] V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces, International Series in Nonlinear Mathematics: Theory, Methods and Applications, 2, Pergamon Press, Oxford-New York, 1981.   Google Scholar
[23]

J. LiangJ. H. Liu and T.-J. Xiao, Nonlocal Cauchy problems for nonautonomous evolution equations, Commun. Pure Appl. Anal., 5 (2006), 529-535.  doi: 10.3934/cpaa.2006.5.529.  Google Scholar

[24]

K. Liu, Stability of Infinite Dimensional Stochastic Differential Equations with Applications, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 135, Chapman & Hall/CRC, Boca Raton, FL, 2006. doi: 10.1201/9781420034820.  Google Scholar

[25]

L. LiuF. GuoC. Wu and Y. Wu, Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces, J. Math. Anal. Appl., 309 (2005), 638-649.  doi: 10.1016/j.jmaa.2004.10.069.  Google Scholar

[26]

L. LiuC. Wu and F. Guo, Existence theorems of global solutions of initial value problems for nonlinear integrodifferential equations of mixed type in Banach spaces and applications, Comput. Math. Appl., 47 (2004), 13-22.  doi: 10.1016/S0898-1221(04)90002-8.  Google Scholar

[27]

J. Luo, Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays, J. Math. Anal. Appl., 342 (2008), 753-760.  doi: 10.1016/j.jmaa.2007.11.019.  Google Scholar

[28]

X. Mao, Stochastic Differential Equations and Their Applications, Horwood Publishing Limited, Chichester, 1997.  Google Scholar

[29]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[30]

Y. RenQ. Zhou and L. Chen, Existence, uniqueness and stability of mild solutions for time-dependent stochastic evolution equations with Poisson jumps and infinite delay, J. Optim. Theory Appl., 149 (2011), 315-331.  doi: 10.1007/s10957-010-9792-0.  Google Scholar

[31]

K. Sobczyk, Stochastic Differential Equations. With Applications to Physics and Engineering, Mathematics and its Applications, 40, Kluwer Academic Publishers Group, Dordrecht, 1991. doi: 10.1007/978-94-011-3712-6.  Google Scholar

[32]

J. X. Sun and X. Y. Zhang, A fixed point theorem for convex-power condensing operators and its applications to abstract semilinear evolution equations, Acta Math. Sinica (Chin. Ser.), 48 (2005), 439-446.   Google Scholar

[33]

T. TaniguchiK. Liu and A. Truman, Existence, uniqueness and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces, J. Differential Equations, 181 (2002), 72-91.  doi: 10.1006/jdeq.2001.4073.  Google Scholar

[34]

J. Wang, Approximate mild solutions of fractional stochastic evolution equations in Hilbert spaces, Appl. Math. Comput., 256 (2015), 315-323.  doi: 10.1016/j.amc.2014.12.155.  Google Scholar

[35]

R. N. WangK. Ezzinbi and P.-X. Zhu, Non-autonomous impulsive Cauchy problems of parabolic type involving nonlocal initial conditions, J. Integral Equations Appl., 26 (2014), 275-299.  doi: 10.1216/JIE-2014-26-2-275.  Google Scholar

[36]

R. N. Wang and P. X. Zhu, Non-autonomous evolution inclusions with nonlocal history conditions: Global integral solutions, Nonlinear Anal., 85 (2013) 180–191. doi: 10.1016/j.na.2013.02.026.  Google Scholar

[37]

X. ZhangP. ChenA. Abdelmonem and Y. Li, Fractional stochastic evolution equations with nonlocal initial conditions and noncompact semigroups, Stochastics, 90 (2018), 1005-1022.  doi: 10.1080/17442508.2018.1466885.  Google Scholar

[38]

X. ZhangP. ChenA. Abdelmonem and Y. Li, Mild solution of stochastic partial differential equation with nonlocal conditions and noncompact semigroups, Math. Slovaca, 69 (2019), 111-124.  doi: 10.1515/ms-2017-0207.  Google Scholar

[1]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[2]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[3]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[4]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[5]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[6]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[7]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[8]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[9]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[10]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281

[11]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[12]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[13]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[14]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[15]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[16]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[17]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[18]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[19]

Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360

[20]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

2019 Impact Factor: 1.27

Article outline

[Back to Top]