March  2021, 26(3): 1549-1563. doi: 10.3934/dcdsb.2020172

Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts

Department of Mathematics, The University of Jordan, Amman 11942, Jordan

Received  November 2019 Revised  March 2020 Published  March 2021 Early access  May 2020

For FitzHugh-Nagumo lattice dynamical systems (LDSs) many authors studied the existence of global attractors for deterministic systems [4,34,41,43] and the existence of global random attractors for stochastic systems [23,24,27,48,49], where for non-autonomous cases, the nonlinear parts are considered of the form $ f\left( u\right) $. Here we study the existence of the uniform global attractor for a new family of non-autonomous FitzHugh-Nagumo LDSs with nonlinear parts of the form $ f\left( u,t\right) $, where we introduce a suitable Banach space of functions $ W $ and we assume that $ f $ is an element of the hull of an almost periodic function $ f_{0}\left( \cdot ,t\right) $ with values in $ W $.

Citation: Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172
References:
[1]

A. Y. Abdallah, Attractors for first order lattice systems with almost periodic nonlinear part, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 1241-1255.  doi: 10.3934/dcdsb.2019218.  Google Scholar

[2]

A. Y. Abdallah, Long-time behavior for second order lattice dynamical systems, Acta Appl. Math., 106 (2009), 47-59.  doi: 10.1007/s10440–008–9281–8.  Google Scholar

[3]

A. Y. Abdallah, Uniform global attractors for first order non-autonomous lattice dynamical systems, Proc. Amer. Math. Soc., 138 (2010), 3219-3228.  doi: 10.1090/S0002–9939–10–10440–7.  Google Scholar

[4]

A. Y. Abdallah, Upper semicontinuity of the attractor for lattice dynamical systems of partly dissipative reaction diffusion systems, J. Appl. Math., 2005 (2005), 273-288.  doi: 10.1155/JAM.2005.273.  Google Scholar

[5]

A. Y. Abdallah and R. T. Wannan, Second order non-autonomous lattice systems and their uniform attractors, Commun. Pure Appl. Anal., 18 (2019), 1827-1846.  doi: 10.3934/cpaa.2019085.  Google Scholar

[6]

P. W. BatesK. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 143-153.  doi: 10.1142/S0218127401002031.  Google Scholar

[7]

J. Bell, Some threshold results for models of myelinated nerves, Math. Biosci., 54 (1981), 181-190.  doi: 10.1016/0025–5564(81)90085–7.  Google Scholar

[8]

J. Bell and C. Cosner, Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons, Quart. Appl. Math., 42 (1984), 1-14.  doi: 10.1090/qam/736501.  Google Scholar

[9]

T. CaraballoF. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, J. Differential Equations, 253 (2012), 667-693.  doi: 10.1016/j.jde.2012.03.020.  Google Scholar

[10]

T. CaraballoF. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity, J. Difference Equ. Appl., 17 (2011), 161-184.  doi: 10.1080/10236198.2010.549010.  Google Scholar

[11]

T. L. Carrol and L. M. Pecora, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821-824.  doi: 10.1103/PhysRevLett.64.821.  Google Scholar

[12]

H. Chate and M. Courbage, Lattice systems, Phys. D, 103 (1997), 1-611.   Google Scholar

[13]

V. V. Chepyzhov and M. I. Vishik, Attractors of non-autonomous dynamical systems and their dimension, J. Math. Pures Appl. (9), 73 (1994), 279-333.   Google Scholar

[14]

S.-N. Chow, Lattice dynamical systems, in Dynamical Systems, Lecture Notes in Math., 1822, Springer, Berlin, 2003, 1–102. doi: 10.1007/978–3–540–45204–1_1.  Google Scholar

[15]

S.-N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems. Ⅰ, Ⅱ, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 746–751,752–756. doi: 10.1109/81.473583.  Google Scholar

[16]

S.-N. ChowJ. Mallet-Paret and E. S. Van Vleck, Pattern formation and spatial chaos in spatially discrete evolution equations, Random Comput. Dynam., 4 (1996), 109-178.   Google Scholar

[17]

L. O. Chua and T. Roska, The CNN paradigm, IEEE Trans. Circuits Systems I Fund. Theory Appl., 40 (1993), 147-156.  doi: 10.1109/81.222795.  Google Scholar

[18]

L. O. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits and Systems, 35 (1988), 1257-1272.  doi: 10.1109/31.7600.  Google Scholar

[19]

L. O. Chua and Y. Yang, Cellular neural networks: Applications, IEEE Trans. Circuits and Systems, 35 (1988), 1273-1290.  doi: 10.1109/31.7601.  Google Scholar

[20]

C. E. Elmer and E. S. Van Vleck, Spatially discrete FitzHugh-Nagumo equations, SIAM J. Appl. Math., 65 (2005), 1153-1174.  doi: 10.1137/S003613990343687X.  Google Scholar

[21]

T. Erneux and G. Nicolis, Propagating waves in discrete bistable reaction-diffusion systems, Phys. D, 67 (1993), 237-244.  doi: 10.1016/0167–2789(93)90208–I.  Google Scholar

[22]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445-466.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[23]

A. Gu and Y. Li, Singleton sets random attractor for stochastic FitzHugh-Nagumo lattice equations driven by fractional Brownian motions, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 3929-3937.  doi: 10.1016/j.cnsns.2014.04.005.  Google Scholar

[24]

A. Gu, Y. Li and J. Li, Random attractors on lattice of stochastic FitzHugh-Nagumo systems driven by $\alpha$–stable Lévy noises, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24 (2014), 9pp. doi: 10.1142/S0218127414501235.  Google Scholar

[25]

X. Han and P. E. Kloeden, Asymptotic behavior of a neural field lattice model with a Heaviside operator, Phys. D, 389 (2019), 1-12.  doi: 10.1016/j.physd.2018.09.004.  Google Scholar

[26]

X. HanW. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.  doi: 10.1016/j.jde.2010.10.018.  Google Scholar

[27]

J. Huang, The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises, Phys. D., 233 (2007), 83-94.  doi: 10.1016/j.physd.2007.06.008.  Google Scholar

[28]

J. HuangX. Han and S. Zhou, Uniform attractors for non-autonomous Klein-Gordon-Schrödinger lattice systems, Appl. Math. Mech. (English Ed.), 30 (2009), 1597-1607.  doi: 10.1007/s10483–009–1211–z.  Google Scholar

[29]

X. JiaC. Zhao and X. Yang, Global attractor and Kolmogorov entropy of three component reversible Gray-Scott model on infinite lattices, Appl. Math. Comput., 218 (2012), 9781-9789.  doi: 10.1016/j.amc.2012.03.036.  Google Scholar

[30]

R. Kapral, Discrete models for chemically reacting systems, J. Math. Chem., 6 (1991), 113-163.  doi: 10.1007/BF01192578.  Google Scholar

[31]

J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), 556-572.  doi: 10.1137/0147038.  Google Scholar

[32]

J. P. Keener, The effects of discrete gap junction coupling on propagation in myocardium, J. Theor. Biol., 148 (1991), 49-82.  doi: 10.1016/S0022-5193(05)80465-5.  Google Scholar

[33] B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge University Press, Cambridge-New York, 1982.   Google Scholar
[34]

X.-J. Li and D.-B. Wang, Attractors for partly dissipative lattice dynamic systems in weighted spaces, J. Math. Anal. Appl., 325 (2007), 141-156.  doi: 10.1016/j.jmaa.2006.01.054.  Google Scholar

[35]

X. LiaoC. Zhao and S. Zhou, Compact uniform attractors for dissipative non-autonomous lattice dynamical systems, Commun. Pure Appl. Anal., 6 (2007), 1087-1111.  doi: 10.3934/cpaa.2007.6.1087.  Google Scholar

[36]

Q. MaS. Wang and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J., 51 (2002), 1541-1559.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[37]

J. Mallet-Paret and S.-N. Chow, Pattern formation and spatial chaos in lattice dynamical systems. Ⅱ, Ⅱ, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 752-756.  doi: 10.1109/81.473583.  Google Scholar

[38]

J. NagumoS. Arimoto and S. Yosimzawa, An active pulse transmission line simulating nerve axon, Proc. IRE, 50 (1964), 2061-2070.  doi: 10.1109/JRPROC.1962.288235.  Google Scholar

[39]

J. C. OliveiraJ. M. Pereira and G. Perla Menzala, Attractors for second order periodic lattices with nonlinear damping, J. Difference Equ. Appl., 14 (2008), 899-921.  doi: 10.1080/10236190701859211.  Google Scholar

[40]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978–1–4612–5561–1.  Google Scholar

[41]

E. Van Vleck and B. Wang, Attractors for lattice FitzHugh-Nagumo systems, Phys. D, 212 (2005), 317-336.  doi: 10.1016/j.physd.2005.10.006.  Google Scholar

[42]

B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136.  doi: 10.1016/j.jmaa.2006.08.070.  Google Scholar

[43]

B. Wang, Dynamical behavior of the almost-periodic discrete FitzHugh-Nagumo systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 1673-1685.  doi: 10.1142/S0218127407017987.  Google Scholar

[44]

B. Wang, Dynamics of stochastic reaction-diffusion lattice system driven by nonlinear noise, J. Math. Anal. Appl., 477 (2019), 104-132.  doi: 10.1016/j.jmaa.2019.04.015.  Google Scholar

[45]

C. WangG. Xue and C. Zhao, Invariant Borel probability measures for discrete long-wave-short-wave resonance equations, Appl. Math. Comput., 339 (2018), 853-865.  doi: 10.1016/j.amc.2018.06.059.  Google Scholar

[46]

R. Wang and Y. Li, Regularity and backward compactness of attractors for non-autonomous lattice systems with random coefficients, Appl. Math. Comput., 354 (2019), 86-102.  doi: 10.1016/j.amc.2019.02.036.  Google Scholar

[47]

R. Wang and B. Wang, Random dynamics of lattice wave equations driven by infinite-dimensional nonlinear noise, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 2461-2493.  doi: 10.3934/dcdsb.2020019.  Google Scholar

[48]

Y. WangY. Liu and Z. Wang, Random attractors for partly dissipative stochastic lattice dynamical systems, J. Difference. Equ. Appl., 14 (2008), 799-817.  doi: 10.1080/10236190701859542.  Google Scholar

[49]

Z. Wang and S. Zhou, Random attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems with random coupled coefficients, Taiwanese J. Math., 20 (2016), 589-616.  doi: 10.11650/tjm.20.2016.6699.  Google Scholar

[50]

X. YangC. Zhao and J. Cao, Dynamics of the discrete coupled nonlinear Schrödinger-Boussinesq equations, Appl. Math. Comput., 219 (2013), 8508-8524.  doi: 10.1016/j.amc.2013.01.053.  Google Scholar

[51]

C. Zhao and S. Zhou, Compact uniform attractors for dissipative lattice dynamical systems with delays, Discrete Contin. Dyn. Syst., 21 (2008), 643-663.  doi: 10.3934/dcds.2008.21.643.  Google Scholar

[52]

C. ZhaoG. Xue and G. Łukaszewicz, Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4021-4044.  doi: 10.3934/dcdsb.2018122.  Google Scholar

[53]

S. Zhou, Attractors for second order lattice dynamical systems, J. Differential Equations, 179 (2002), 605-624.  doi: 10.1006/jdeq.2001.4032.  Google Scholar

[54]

S. Zhou, Attractors for first order dissipative lattice dynamical systems, Phys. D, 178 (2003), 51-61.  doi: 10.1016/S0167–2789(02)00807–2.  Google Scholar

[55]

S. Zhou, Attractors and approximations for lattice dynamical systems, J. Differential Equations, 200 (2004), 342-368.  doi: 10.1016/j.jde.2004.02.005.  Google Scholar

[56]

S. Zhou and M. Zhao, Uniform exponential attractor for second order lattice system with quasi–periodic external forces in weighted space, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24 (2014), 9pp. doi: 10.1142/S0218127414500060.  Google Scholar

show all references

References:
[1]

A. Y. Abdallah, Attractors for first order lattice systems with almost periodic nonlinear part, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 1241-1255.  doi: 10.3934/dcdsb.2019218.  Google Scholar

[2]

A. Y. Abdallah, Long-time behavior for second order lattice dynamical systems, Acta Appl. Math., 106 (2009), 47-59.  doi: 10.1007/s10440–008–9281–8.  Google Scholar

[3]

A. Y. Abdallah, Uniform global attractors for first order non-autonomous lattice dynamical systems, Proc. Amer. Math. Soc., 138 (2010), 3219-3228.  doi: 10.1090/S0002–9939–10–10440–7.  Google Scholar

[4]

A. Y. Abdallah, Upper semicontinuity of the attractor for lattice dynamical systems of partly dissipative reaction diffusion systems, J. Appl. Math., 2005 (2005), 273-288.  doi: 10.1155/JAM.2005.273.  Google Scholar

[5]

A. Y. Abdallah and R. T. Wannan, Second order non-autonomous lattice systems and their uniform attractors, Commun. Pure Appl. Anal., 18 (2019), 1827-1846.  doi: 10.3934/cpaa.2019085.  Google Scholar

[6]

P. W. BatesK. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 143-153.  doi: 10.1142/S0218127401002031.  Google Scholar

[7]

J. Bell, Some threshold results for models of myelinated nerves, Math. Biosci., 54 (1981), 181-190.  doi: 10.1016/0025–5564(81)90085–7.  Google Scholar

[8]

J. Bell and C. Cosner, Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons, Quart. Appl. Math., 42 (1984), 1-14.  doi: 10.1090/qam/736501.  Google Scholar

[9]

T. CaraballoF. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, J. Differential Equations, 253 (2012), 667-693.  doi: 10.1016/j.jde.2012.03.020.  Google Scholar

[10]

T. CaraballoF. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity, J. Difference Equ. Appl., 17 (2011), 161-184.  doi: 10.1080/10236198.2010.549010.  Google Scholar

[11]

T. L. Carrol and L. M. Pecora, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821-824.  doi: 10.1103/PhysRevLett.64.821.  Google Scholar

[12]

H. Chate and M. Courbage, Lattice systems, Phys. D, 103 (1997), 1-611.   Google Scholar

[13]

V. V. Chepyzhov and M. I. Vishik, Attractors of non-autonomous dynamical systems and their dimension, J. Math. Pures Appl. (9), 73 (1994), 279-333.   Google Scholar

[14]

S.-N. Chow, Lattice dynamical systems, in Dynamical Systems, Lecture Notes in Math., 1822, Springer, Berlin, 2003, 1–102. doi: 10.1007/978–3–540–45204–1_1.  Google Scholar

[15]

S.-N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems. Ⅰ, Ⅱ, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 746–751,752–756. doi: 10.1109/81.473583.  Google Scholar

[16]

S.-N. ChowJ. Mallet-Paret and E. S. Van Vleck, Pattern formation and spatial chaos in spatially discrete evolution equations, Random Comput. Dynam., 4 (1996), 109-178.   Google Scholar

[17]

L. O. Chua and T. Roska, The CNN paradigm, IEEE Trans. Circuits Systems I Fund. Theory Appl., 40 (1993), 147-156.  doi: 10.1109/81.222795.  Google Scholar

[18]

L. O. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits and Systems, 35 (1988), 1257-1272.  doi: 10.1109/31.7600.  Google Scholar

[19]

L. O. Chua and Y. Yang, Cellular neural networks: Applications, IEEE Trans. Circuits and Systems, 35 (1988), 1273-1290.  doi: 10.1109/31.7601.  Google Scholar

[20]

C. E. Elmer and E. S. Van Vleck, Spatially discrete FitzHugh-Nagumo equations, SIAM J. Appl. Math., 65 (2005), 1153-1174.  doi: 10.1137/S003613990343687X.  Google Scholar

[21]

T. Erneux and G. Nicolis, Propagating waves in discrete bistable reaction-diffusion systems, Phys. D, 67 (1993), 237-244.  doi: 10.1016/0167–2789(93)90208–I.  Google Scholar

[22]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445-466.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[23]

A. Gu and Y. Li, Singleton sets random attractor for stochastic FitzHugh-Nagumo lattice equations driven by fractional Brownian motions, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 3929-3937.  doi: 10.1016/j.cnsns.2014.04.005.  Google Scholar

[24]

A. Gu, Y. Li and J. Li, Random attractors on lattice of stochastic FitzHugh-Nagumo systems driven by $\alpha$–stable Lévy noises, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24 (2014), 9pp. doi: 10.1142/S0218127414501235.  Google Scholar

[25]

X. Han and P. E. Kloeden, Asymptotic behavior of a neural field lattice model with a Heaviside operator, Phys. D, 389 (2019), 1-12.  doi: 10.1016/j.physd.2018.09.004.  Google Scholar

[26]

X. HanW. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.  doi: 10.1016/j.jde.2010.10.018.  Google Scholar

[27]

J. Huang, The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises, Phys. D., 233 (2007), 83-94.  doi: 10.1016/j.physd.2007.06.008.  Google Scholar

[28]

J. HuangX. Han and S. Zhou, Uniform attractors for non-autonomous Klein-Gordon-Schrödinger lattice systems, Appl. Math. Mech. (English Ed.), 30 (2009), 1597-1607.  doi: 10.1007/s10483–009–1211–z.  Google Scholar

[29]

X. JiaC. Zhao and X. Yang, Global attractor and Kolmogorov entropy of three component reversible Gray-Scott model on infinite lattices, Appl. Math. Comput., 218 (2012), 9781-9789.  doi: 10.1016/j.amc.2012.03.036.  Google Scholar

[30]

R. Kapral, Discrete models for chemically reacting systems, J. Math. Chem., 6 (1991), 113-163.  doi: 10.1007/BF01192578.  Google Scholar

[31]

J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), 556-572.  doi: 10.1137/0147038.  Google Scholar

[32]

J. P. Keener, The effects of discrete gap junction coupling on propagation in myocardium, J. Theor. Biol., 148 (1991), 49-82.  doi: 10.1016/S0022-5193(05)80465-5.  Google Scholar

[33] B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge University Press, Cambridge-New York, 1982.   Google Scholar
[34]

X.-J. Li and D.-B. Wang, Attractors for partly dissipative lattice dynamic systems in weighted spaces, J. Math. Anal. Appl., 325 (2007), 141-156.  doi: 10.1016/j.jmaa.2006.01.054.  Google Scholar

[35]

X. LiaoC. Zhao and S. Zhou, Compact uniform attractors for dissipative non-autonomous lattice dynamical systems, Commun. Pure Appl. Anal., 6 (2007), 1087-1111.  doi: 10.3934/cpaa.2007.6.1087.  Google Scholar

[36]

Q. MaS. Wang and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J., 51 (2002), 1541-1559.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[37]

J. Mallet-Paret and S.-N. Chow, Pattern formation and spatial chaos in lattice dynamical systems. Ⅱ, Ⅱ, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 752-756.  doi: 10.1109/81.473583.  Google Scholar

[38]

J. NagumoS. Arimoto and S. Yosimzawa, An active pulse transmission line simulating nerve axon, Proc. IRE, 50 (1964), 2061-2070.  doi: 10.1109/JRPROC.1962.288235.  Google Scholar

[39]

J. C. OliveiraJ. M. Pereira and G. Perla Menzala, Attractors for second order periodic lattices with nonlinear damping, J. Difference Equ. Appl., 14 (2008), 899-921.  doi: 10.1080/10236190701859211.  Google Scholar

[40]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978–1–4612–5561–1.  Google Scholar

[41]

E. Van Vleck and B. Wang, Attractors for lattice FitzHugh-Nagumo systems, Phys. D, 212 (2005), 317-336.  doi: 10.1016/j.physd.2005.10.006.  Google Scholar

[42]

B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136.  doi: 10.1016/j.jmaa.2006.08.070.  Google Scholar

[43]

B. Wang, Dynamical behavior of the almost-periodic discrete FitzHugh-Nagumo systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 1673-1685.  doi: 10.1142/S0218127407017987.  Google Scholar

[44]

B. Wang, Dynamics of stochastic reaction-diffusion lattice system driven by nonlinear noise, J. Math. Anal. Appl., 477 (2019), 104-132.  doi: 10.1016/j.jmaa.2019.04.015.  Google Scholar

[45]

C. WangG. Xue and C. Zhao, Invariant Borel probability measures for discrete long-wave-short-wave resonance equations, Appl. Math. Comput., 339 (2018), 853-865.  doi: 10.1016/j.amc.2018.06.059.  Google Scholar

[46]

R. Wang and Y. Li, Regularity and backward compactness of attractors for non-autonomous lattice systems with random coefficients, Appl. Math. Comput., 354 (2019), 86-102.  doi: 10.1016/j.amc.2019.02.036.  Google Scholar

[47]

R. Wang and B. Wang, Random dynamics of lattice wave equations driven by infinite-dimensional nonlinear noise, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 2461-2493.  doi: 10.3934/dcdsb.2020019.  Google Scholar

[48]

Y. WangY. Liu and Z. Wang, Random attractors for partly dissipative stochastic lattice dynamical systems, J. Difference. Equ. Appl., 14 (2008), 799-817.  doi: 10.1080/10236190701859542.  Google Scholar

[49]

Z. Wang and S. Zhou, Random attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems with random coupled coefficients, Taiwanese J. Math., 20 (2016), 589-616.  doi: 10.11650/tjm.20.2016.6699.  Google Scholar

[50]

X. YangC. Zhao and J. Cao, Dynamics of the discrete coupled nonlinear Schrödinger-Boussinesq equations, Appl. Math. Comput., 219 (2013), 8508-8524.  doi: 10.1016/j.amc.2013.01.053.  Google Scholar

[51]

C. Zhao and S. Zhou, Compact uniform attractors for dissipative lattice dynamical systems with delays, Discrete Contin. Dyn. Syst., 21 (2008), 643-663.  doi: 10.3934/dcds.2008.21.643.  Google Scholar

[52]

C. ZhaoG. Xue and G. Łukaszewicz, Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4021-4044.  doi: 10.3934/dcdsb.2018122.  Google Scholar

[53]

S. Zhou, Attractors for second order lattice dynamical systems, J. Differential Equations, 179 (2002), 605-624.  doi: 10.1006/jdeq.2001.4032.  Google Scholar

[54]

S. Zhou, Attractors for first order dissipative lattice dynamical systems, Phys. D, 178 (2003), 51-61.  doi: 10.1016/S0167–2789(02)00807–2.  Google Scholar

[55]

S. Zhou, Attractors and approximations for lattice dynamical systems, J. Differential Equations, 200 (2004), 342-368.  doi: 10.1016/j.jde.2004.02.005.  Google Scholar

[56]

S. Zhou and M. Zhao, Uniform exponential attractor for second order lattice system with quasi–periodic external forces in weighted space, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24 (2014), 9pp. doi: 10.1142/S0218127414500060.  Google Scholar

[1]

Wenqiang Zhao. Smoothing dynamics of the non-autonomous stochastic Fitzhugh-Nagumo system on $\mathbb{R}^N$ driven by multiplicative noises. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3453-3474. doi: 10.3934/dcdsb.2018251

[2]

Abiti Adili, Bixiang Wang. Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 643-666. doi: 10.3934/dcdsb.2013.18.643

[3]

Abiti Adili, Bixiang Wang. Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Conference Publications, 2013, 2013 (special) : 1-10. doi: 10.3934/proc.2013.2013.1

[4]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[5]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[6]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[7]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[8]

Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120

[9]

B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077

[10]

Ahmed Y. Abdallah, Rania T. Wannan. Second order non-autonomous lattice systems and their uniform attractors. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1827-1846. doi: 10.3934/cpaa.2019085

[11]

Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106

[12]

Takashi Kajiwara. The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2441-2465. doi: 10.3934/dcds.2018101

[13]

Bao Quoc Tang. Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 441-466. doi: 10.3934/dcds.2015.35.441

[14]

Matthieu Alfaro, Hiroshi Matano. On the validity of formal asymptotic expansions in Allen-Cahn equation and FitzHugh-Nagumo system with generic initial data. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1639-1649. doi: 10.3934/dcdsb.2012.17.1639

[15]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[16]

Xiaolin Jia, Caidi Zhao, Juan Cao. Uniform attractor of the non-autonomous discrete Selkov model. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 229-248. doi: 10.3934/dcds.2014.34.229

[17]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[18]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[19]

Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete & Continuous Dynamical Systems, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523

[20]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (212)
  • HTML views (350)
  • Cited by (1)

Other articles
by authors

[Back to Top]