March  2021, 26(3): 1579-1613. doi: 10.3934/dcdsb.2020174

On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms

1. 

Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam

2. 

Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam

3. 

LaSIE, Faculté des Sciences, Pole Sciences et Technologies, Université de La Rochelle, Avenue M. Crepeau, 17042 La Rochelle Cedex, France, NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia, RUDN University, 6 Miklukho-Maklay St, Moscow 117198, Russia

4. 

Applied Analysis Research Group, Faculty of Mathematics, and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

* Corresponding author: nguyenhuytuan@tdtu.edu.vn

Received  December 2019 Published  May 2020

We study a terminal value parabolic system with nonlinear-nonlocal diffusions. Firstly, we consider the issue of existence and ill-posed property of a solution. Then we introduce two regularization methods to solve the system in which the diffusion coefficients are globally Lipschitz or locally Lipschitz under some a priori assumptions on the sought solutions. The existence, uniqueness and regularity of solutions of the regularized problem are obtained. Furthermore, The error estimates show that the approximate solution converges to the exact solution in $ L^2 $ norm and also in $ H^1 $ norm.

Citation: Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174
References:
[1]

R. M. P. AlmeidaS. N. AntontsevJ. C. M. Duque and J. A. Ferreira, A reaction-diffusion model for the non-local coupled system: Existence, uniqueness, long-time behaviour and localization properties of solutions, IMA J. Appl. Math., 81 (2016), 344-364.  doi: 10.1093/imamat/hxv041.  Google Scholar

[2]

C. O. AlvesF. J. S. A. Corrêa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93.  doi: 10.1016/j.camwa.2005.01.008.  Google Scholar

[3]

A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305-330.  doi: 10.1090/S0002-9947-96-01532-2.  Google Scholar

[4]

G. AutuoriP. Pucci and M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., 196 (2010), 489-516.  doi: 10.1007/s00205-009-0241-x.  Google Scholar

[5]

G. AutuoriP. Pucci and M. C. Salvatori, Asymptotic stability for anisotropic Kirchhoff systems, J. Math. Anal. Appl., 352 (2009), 149-165.  doi: 10.1016/j.jmaa.2008.04.066.  Google Scholar

[6]

G. Autuori and P. Pucci, Kirchhoff systems with dynamic boundary conditions, Nonlinear Anal., 73 (2010), 1952-1965.  doi: 10.1016/j.na.2010.05.024.  Google Scholar

[7]

G. AvalosI. Lasiecka and R. Rebarber, Boundary controllability of a coupled wave/Kirchhoff system, Systems Control Lett., 50 (2003), 331-341.  doi: 10.1016/S0167-6911(03)00179-8.  Google Scholar

[8]

S. Boulaaras and A. Allahem, Existence of positive solutions of nonlocal $p(x)$-Kirchhoff evolutionary systems via sub-super solutions concept, Symmetry, 11 (2019), 11pp. doi: 10.3390/sym11020253.  Google Scholar

[9]

M. Camurdan and R. Triggiani, Sharp regularity of a coupled system of a wave and a Kirchhoff equation with point control arising in noise reduction, Differential Integral Equations, 12 (1999), 101-118.   Google Scholar

[10]

T. CaraballoM. Herrera-Cobos and P. Martín-Rubio, Long-time behavior of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms, Nonlinear Anal., 121 (2015), 3-18.  doi: 10.1016/j.na.2014.07.011.  Google Scholar

[11]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Robustness of nonautonomous attractors for a family of nonlocal reaction-diffusion equations without uniqueness, Nonlinear Dynam., 84 (2016), 35-50.  doi: 10.1007/s11071-015-2200-4.  Google Scholar

[12]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Global attractor for a nonlocal $p$-Laplacian equation without uniqueness of solution, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1801-1816.  doi: 10.3934/dcdsb.2017107.  Google Scholar

[13]

T. CaraballoM. Herrera-Cobos and P. M. Rubio, Asymptotic behaviour of nonlocal $p$-Laplacian reactiondiffusion problems, J. Math. Anal. Appl., 459 (2018), 997-1015.  doi: 10.1016/j.jmaa.2017.11.013.  Google Scholar

[14]

M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30 (1997), 4619-4627.  doi: 10.1016/S0362-546X(97)00169-7.  Google Scholar

[15]

P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262.  doi: 10.1007/BF02100605.  Google Scholar

[16]

ç Dawidowski, The quasilinear parabolic Kirchhoff equation, Open Math., 15 (2017) 382–392. doi: 10.1515/math-2017-0036.  Google Scholar

[17]

Y. Fu and M. Xiang, Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent, Appl. Anal., 95 (2016), 524-544.  doi: 10.1080/00036811.2015.1022153.  Google Scholar

[18]

M. Ghisi and M. Gobbino, Hyperbolic-parabolic singular perturbation for mildly degenerate Kirchhoff equations: Time-decay estimates, J. Differential Equations, 245 (2008), 2979-3007.  doi: 10.1016/j.jde.2008.04.017.  Google Scholar

[19]

M. Ghisi and M. Gobbino, Hyperbolic-parabolic singular perturbation for nondegenerate Kirchhoff equations with critical weak dissipation, Math. Ann., 354 (2012), 1079-1102.  doi: 10.1007/s00208-011-0765-x.  Google Scholar

[20]

M. Gobbino, Quasilinear degenerate parabolic equations of Kirchhoff type, Math. Methods Appl. Sci., 22 (1999), 375-388.  doi: 10.1002/(SICI)1099-1476(19990325)22:5<375::AID-MMA26>3.0.CO;2-7.  Google Scholar

[21]

A. HajejZ. Hajjej and L. Tebou, Indirect stabilization of weakly coupled Kirchhoff plate and wave equations with frictional damping, J. Math. Anal. Appl., 474 (2019), 290-308.  doi: 10.1016/j.jmaa.2019.01.046.  Google Scholar

[22]

E. J. HurtadoO. H. Miyagaki and R. d. S. Rodrigues, Existence and asymptotic behaviour for a Kirchhoff type equation with variable critical growth exponent, Milan J. Math., 85 (2017), 71-102.  doi: 10.1007/s00032-017-0266-9.  Google Scholar

[23]

J. I. Kanel and M. Kirane, Global solutions of reaction-diffusion systems with a balance law and nonlinearities of exponential growth, J. Differential Equations, 165 (2000), 24-41.  doi: 10.1006/jdeq.2000.3769.  Google Scholar

[24]

M. Kirane, Global bounds and asymptotics for a system of reaction-diffusion equations, J. Math. Anal. Appl., 138 (1989), 328-342.  doi: 10.1016/0022-247X(89)90293-X.  Google Scholar

[25]

M. Kirane and M. Qafsaoui, Global nonexistence for the Cauchy problem of some nonlinear reaction-diffusion systems, J. Math. Anal. Appl., 268 (2002), 217-243.  doi: 10.1006/jmaa.2001.7819.  Google Scholar

[26]

J. LímacoH. R. Clark and L. A. Medeiros, On damped Kirchhoff equation with variable coefficients, J. Math. Anal. Appl., 307 (2005), 641-655.  doi: 10.1016/j.jmaa.2004.12.032.  Google Scholar

[27]

T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal., 63 (2005), 1967-1977.  doi: 10.1016/j.na.2005.03.021.  Google Scholar

[28]

H. MedekhelzS. Boulaaras and R. Guefaifia, Existence of positive solutions for a class of Kirchhoff parabolic systems with multiple parameters, Applied Math. E-Notes, 18 (2018), 295-306.   Google Scholar

[29]

C. A. RaposoM. SepúlvedaO. V. VillagránD. C. Pereira and M. L. Santos, Solution and asymptotic behaviour for a nonlocal coupled system of reaction-diffusion, Acta Appl. Math., 102 (2008), 37-56.  doi: 10.1007/s10440-008-9207-5.  Google Scholar

[30]

J. Simsen and J. Ferreira, A global attractor for a nonlocal parabolic problem, Nonlinear Stud., 21 (2014), 405-416.   Google Scholar

[31]

N. H. Tuan, V. V. Au, V. A. Khoa and D. Lesnic, Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction, Inverse Problems, 33 (2017), 40pp. doi: 10.1088/1361-6420/aa635f.  Google Scholar

[32]

H. T. Nguyen, V. A. Khoa and and V. A. Vo, Analysis of a quasi-reversibility method for a terminal value quasi-linear parabolic problem with measurements, SIAM J. Math. Anal., 51 (2019), 60–85.  Google Scholar

[33]

N. H. TuanD. H. Q. Nam and T. M. N. Vo, On a backward problem for the Kirchhoff's model of parabolic type, Comput. Math. Appl., 77 (2019), 15-33.  doi: 10.1016/j.camwa.2018.08.072.  Google Scholar

show all references

References:
[1]

R. M. P. AlmeidaS. N. AntontsevJ. C. M. Duque and J. A. Ferreira, A reaction-diffusion model for the non-local coupled system: Existence, uniqueness, long-time behaviour and localization properties of solutions, IMA J. Appl. Math., 81 (2016), 344-364.  doi: 10.1093/imamat/hxv041.  Google Scholar

[2]

C. O. AlvesF. J. S. A. Corrêa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93.  doi: 10.1016/j.camwa.2005.01.008.  Google Scholar

[3]

A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305-330.  doi: 10.1090/S0002-9947-96-01532-2.  Google Scholar

[4]

G. AutuoriP. Pucci and M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., 196 (2010), 489-516.  doi: 10.1007/s00205-009-0241-x.  Google Scholar

[5]

G. AutuoriP. Pucci and M. C. Salvatori, Asymptotic stability for anisotropic Kirchhoff systems, J. Math. Anal. Appl., 352 (2009), 149-165.  doi: 10.1016/j.jmaa.2008.04.066.  Google Scholar

[6]

G. Autuori and P. Pucci, Kirchhoff systems with dynamic boundary conditions, Nonlinear Anal., 73 (2010), 1952-1965.  doi: 10.1016/j.na.2010.05.024.  Google Scholar

[7]

G. AvalosI. Lasiecka and R. Rebarber, Boundary controllability of a coupled wave/Kirchhoff system, Systems Control Lett., 50 (2003), 331-341.  doi: 10.1016/S0167-6911(03)00179-8.  Google Scholar

[8]

S. Boulaaras and A. Allahem, Existence of positive solutions of nonlocal $p(x)$-Kirchhoff evolutionary systems via sub-super solutions concept, Symmetry, 11 (2019), 11pp. doi: 10.3390/sym11020253.  Google Scholar

[9]

M. Camurdan and R. Triggiani, Sharp regularity of a coupled system of a wave and a Kirchhoff equation with point control arising in noise reduction, Differential Integral Equations, 12 (1999), 101-118.   Google Scholar

[10]

T. CaraballoM. Herrera-Cobos and P. Martín-Rubio, Long-time behavior of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms, Nonlinear Anal., 121 (2015), 3-18.  doi: 10.1016/j.na.2014.07.011.  Google Scholar

[11]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Robustness of nonautonomous attractors for a family of nonlocal reaction-diffusion equations without uniqueness, Nonlinear Dynam., 84 (2016), 35-50.  doi: 10.1007/s11071-015-2200-4.  Google Scholar

[12]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Global attractor for a nonlocal $p$-Laplacian equation without uniqueness of solution, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1801-1816.  doi: 10.3934/dcdsb.2017107.  Google Scholar

[13]

T. CaraballoM. Herrera-Cobos and P. M. Rubio, Asymptotic behaviour of nonlocal $p$-Laplacian reactiondiffusion problems, J. Math. Anal. Appl., 459 (2018), 997-1015.  doi: 10.1016/j.jmaa.2017.11.013.  Google Scholar

[14]

M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30 (1997), 4619-4627.  doi: 10.1016/S0362-546X(97)00169-7.  Google Scholar

[15]

P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262.  doi: 10.1007/BF02100605.  Google Scholar

[16]

ç Dawidowski, The quasilinear parabolic Kirchhoff equation, Open Math., 15 (2017) 382–392. doi: 10.1515/math-2017-0036.  Google Scholar

[17]

Y. Fu and M. Xiang, Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent, Appl. Anal., 95 (2016), 524-544.  doi: 10.1080/00036811.2015.1022153.  Google Scholar

[18]

M. Ghisi and M. Gobbino, Hyperbolic-parabolic singular perturbation for mildly degenerate Kirchhoff equations: Time-decay estimates, J. Differential Equations, 245 (2008), 2979-3007.  doi: 10.1016/j.jde.2008.04.017.  Google Scholar

[19]

M. Ghisi and M. Gobbino, Hyperbolic-parabolic singular perturbation for nondegenerate Kirchhoff equations with critical weak dissipation, Math. Ann., 354 (2012), 1079-1102.  doi: 10.1007/s00208-011-0765-x.  Google Scholar

[20]

M. Gobbino, Quasilinear degenerate parabolic equations of Kirchhoff type, Math. Methods Appl. Sci., 22 (1999), 375-388.  doi: 10.1002/(SICI)1099-1476(19990325)22:5<375::AID-MMA26>3.0.CO;2-7.  Google Scholar

[21]

A. HajejZ. Hajjej and L. Tebou, Indirect stabilization of weakly coupled Kirchhoff plate and wave equations with frictional damping, J. Math. Anal. Appl., 474 (2019), 290-308.  doi: 10.1016/j.jmaa.2019.01.046.  Google Scholar

[22]

E. J. HurtadoO. H. Miyagaki and R. d. S. Rodrigues, Existence and asymptotic behaviour for a Kirchhoff type equation with variable critical growth exponent, Milan J. Math., 85 (2017), 71-102.  doi: 10.1007/s00032-017-0266-9.  Google Scholar

[23]

J. I. Kanel and M. Kirane, Global solutions of reaction-diffusion systems with a balance law and nonlinearities of exponential growth, J. Differential Equations, 165 (2000), 24-41.  doi: 10.1006/jdeq.2000.3769.  Google Scholar

[24]

M. Kirane, Global bounds and asymptotics for a system of reaction-diffusion equations, J. Math. Anal. Appl., 138 (1989), 328-342.  doi: 10.1016/0022-247X(89)90293-X.  Google Scholar

[25]

M. Kirane and M. Qafsaoui, Global nonexistence for the Cauchy problem of some nonlinear reaction-diffusion systems, J. Math. Anal. Appl., 268 (2002), 217-243.  doi: 10.1006/jmaa.2001.7819.  Google Scholar

[26]

J. LímacoH. R. Clark and L. A. Medeiros, On damped Kirchhoff equation with variable coefficients, J. Math. Anal. Appl., 307 (2005), 641-655.  doi: 10.1016/j.jmaa.2004.12.032.  Google Scholar

[27]

T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal., 63 (2005), 1967-1977.  doi: 10.1016/j.na.2005.03.021.  Google Scholar

[28]

H. MedekhelzS. Boulaaras and R. Guefaifia, Existence of positive solutions for a class of Kirchhoff parabolic systems with multiple parameters, Applied Math. E-Notes, 18 (2018), 295-306.   Google Scholar

[29]

C. A. RaposoM. SepúlvedaO. V. VillagránD. C. Pereira and M. L. Santos, Solution and asymptotic behaviour for a nonlocal coupled system of reaction-diffusion, Acta Appl. Math., 102 (2008), 37-56.  doi: 10.1007/s10440-008-9207-5.  Google Scholar

[30]

J. Simsen and J. Ferreira, A global attractor for a nonlocal parabolic problem, Nonlinear Stud., 21 (2014), 405-416.   Google Scholar

[31]

N. H. Tuan, V. V. Au, V. A. Khoa and D. Lesnic, Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction, Inverse Problems, 33 (2017), 40pp. doi: 10.1088/1361-6420/aa635f.  Google Scholar

[32]

H. T. Nguyen, V. A. Khoa and and V. A. Vo, Analysis of a quasi-reversibility method for a terminal value quasi-linear parabolic problem with measurements, SIAM J. Math. Anal., 51 (2019), 60–85.  Google Scholar

[33]

N. H. TuanD. H. Q. Nam and T. M. N. Vo, On a backward problem for the Kirchhoff's model of parabolic type, Comput. Math. Appl., 77 (2019), 15-33.  doi: 10.1016/j.camwa.2018.08.072.  Google Scholar

[1]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[2]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[3]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[4]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[5]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[6]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[7]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[8]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[9]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[10]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[11]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[12]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[13]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[14]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[15]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[16]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[17]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[18]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[19]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[20]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (126)
  • HTML views (337)
  • Cited by (0)

Other articles
by authors

[Back to Top]