# American Institute of Mathematical Sciences

March  2021, 26(3): 1579-1613. doi: 10.3934/dcdsb.2020174

## On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms

 1 Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam 2 Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam 3 LaSIE, Faculté des Sciences, Pole Sciences et Technologies, Université de La Rochelle, Avenue M. Crepeau, 17042 La Rochelle Cedex, France, NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia, RUDN University, 6 Miklukho-Maklay St, Moscow 117198, Russia 4 Applied Analysis Research Group, Faculty of Mathematics, and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

* Corresponding author: nguyenhuytuan@tdtu.edu.vn

Received  December 2019 Published  May 2020

We study a terminal value parabolic system with nonlinear-nonlocal diffusions. Firstly, we consider the issue of existence and ill-posed property of a solution. Then we introduce two regularization methods to solve the system in which the diffusion coefficients are globally Lipschitz or locally Lipschitz under some a priori assumptions on the sought solutions. The existence, uniqueness and regularity of solutions of the regularized problem are obtained. Furthermore, The error estimates show that the approximate solution converges to the exact solution in $L^2$ norm and also in $H^1$ norm.

Citation: Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174
##### References:
 [1] R. M. P. Almeida, S. N. Antontsev, J. C. M. Duque and J. A. Ferreira, A reaction-diffusion model for the non-local coupled system: Existence, uniqueness, long-time behaviour and localization properties of solutions, IMA J. Appl. Math., 81 (2016), 344-364.  doi: 10.1093/imamat/hxv041.  Google Scholar [2] C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93.  doi: 10.1016/j.camwa.2005.01.008.  Google Scholar [3] A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305-330.  doi: 10.1090/S0002-9947-96-01532-2.  Google Scholar [4] G. Autuori, P. Pucci and M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., 196 (2010), 489-516.  doi: 10.1007/s00205-009-0241-x.  Google Scholar [5] G. Autuori, P. Pucci and M. C. Salvatori, Asymptotic stability for anisotropic Kirchhoff systems, J. Math. Anal. Appl., 352 (2009), 149-165.  doi: 10.1016/j.jmaa.2008.04.066.  Google Scholar [6] G. Autuori and P. Pucci, Kirchhoff systems with dynamic boundary conditions, Nonlinear Anal., 73 (2010), 1952-1965.  doi: 10.1016/j.na.2010.05.024.  Google Scholar [7] G. Avalos, I. Lasiecka and R. Rebarber, Boundary controllability of a coupled wave/Kirchhoff system, Systems Control Lett., 50 (2003), 331-341.  doi: 10.1016/S0167-6911(03)00179-8.  Google Scholar [8] S. Boulaaras and A. Allahem, Existence of positive solutions of nonlocal $p(x)$-Kirchhoff evolutionary systems via sub-super solutions concept, Symmetry, 11 (2019), 11pp. doi: 10.3390/sym11020253.  Google Scholar [9] M. Camurdan and R. Triggiani, Sharp regularity of a coupled system of a wave and a Kirchhoff equation with point control arising in noise reduction, Differential Integral Equations, 12 (1999), 101-118.   Google Scholar [10] T. Caraballo, M. Herrera-Cobos and P. Martín-Rubio, Long-time behavior of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms, Nonlinear Anal., 121 (2015), 3-18.  doi: 10.1016/j.na.2014.07.011.  Google Scholar [11] T. Caraballo, M. Herrera-Cobos and P. Marín-Rubio, Robustness of nonautonomous attractors for a family of nonlocal reaction-diffusion equations without uniqueness, Nonlinear Dynam., 84 (2016), 35-50.  doi: 10.1007/s11071-015-2200-4.  Google Scholar [12] T. Caraballo, M. Herrera-Cobos and P. Marín-Rubio, Global attractor for a nonlocal $p$-Laplacian equation without uniqueness of solution, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1801-1816.  doi: 10.3934/dcdsb.2017107.  Google Scholar [13] T. Caraballo, M. Herrera-Cobos and P. M. Rubio, Asymptotic behaviour of nonlocal $p$-Laplacian reactiondiffusion problems, J. Math. Anal. Appl., 459 (2018), 997-1015.  doi: 10.1016/j.jmaa.2017.11.013.  Google Scholar [14] M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30 (1997), 4619-4627.  doi: 10.1016/S0362-546X(97)00169-7.  Google Scholar [15] P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262.  doi: 10.1007/BF02100605.  Google Scholar [16] ç Dawidowski, The quasilinear parabolic Kirchhoff equation, Open Math., 15 (2017) 382–392. doi: 10.1515/math-2017-0036.  Google Scholar [17] Y. Fu and M. Xiang, Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent, Appl. Anal., 95 (2016), 524-544.  doi: 10.1080/00036811.2015.1022153.  Google Scholar [18] M. Ghisi and M. Gobbino, Hyperbolic-parabolic singular perturbation for mildly degenerate Kirchhoff equations: Time-decay estimates, J. Differential Equations, 245 (2008), 2979-3007.  doi: 10.1016/j.jde.2008.04.017.  Google Scholar [19] M. Ghisi and M. Gobbino, Hyperbolic-parabolic singular perturbation for nondegenerate Kirchhoff equations with critical weak dissipation, Math. Ann., 354 (2012), 1079-1102.  doi: 10.1007/s00208-011-0765-x.  Google Scholar [20] M. Gobbino, Quasilinear degenerate parabolic equations of Kirchhoff type, Math. Methods Appl. Sci., 22 (1999), 375-388.  doi: 10.1002/(SICI)1099-1476(19990325)22:5<375::AID-MMA26>3.0.CO;2-7.  Google Scholar [21] A. Hajej, Z. Hajjej and L. Tebou, Indirect stabilization of weakly coupled Kirchhoff plate and wave equations with frictional damping, J. Math. Anal. Appl., 474 (2019), 290-308.  doi: 10.1016/j.jmaa.2019.01.046.  Google Scholar [22] E. J. Hurtado, O. H. Miyagaki and R. d. S. Rodrigues, Existence and asymptotic behaviour for a Kirchhoff type equation with variable critical growth exponent, Milan J. Math., 85 (2017), 71-102.  doi: 10.1007/s00032-017-0266-9.  Google Scholar [23] J. I. Kanel and M. Kirane, Global solutions of reaction-diffusion systems with a balance law and nonlinearities of exponential growth, J. Differential Equations, 165 (2000), 24-41.  doi: 10.1006/jdeq.2000.3769.  Google Scholar [24] M. Kirane, Global bounds and asymptotics for a system of reaction-diffusion equations, J. Math. Anal. Appl., 138 (1989), 328-342.  doi: 10.1016/0022-247X(89)90293-X.  Google Scholar [25] M. Kirane and M. Qafsaoui, Global nonexistence for the Cauchy problem of some nonlinear reaction-diffusion systems, J. Math. Anal. Appl., 268 (2002), 217-243.  doi: 10.1006/jmaa.2001.7819.  Google Scholar [26] J. Límaco, H. R. Clark and L. A. Medeiros, On damped Kirchhoff equation with variable coefficients, J. Math. Anal. Appl., 307 (2005), 641-655.  doi: 10.1016/j.jmaa.2004.12.032.  Google Scholar [27] T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal., 63 (2005), 1967-1977.  doi: 10.1016/j.na.2005.03.021.  Google Scholar [28] H. Medekhelz, S. Boulaaras and R. Guefaifia, Existence of positive solutions for a class of Kirchhoff parabolic systems with multiple parameters, Applied Math. E-Notes, 18 (2018), 295-306.   Google Scholar [29] C. A. Raposo, M. Sepúlveda, O. V. Villagrán, D. C. Pereira and M. L. Santos, Solution and asymptotic behaviour for a nonlocal coupled system of reaction-diffusion, Acta Appl. Math., 102 (2008), 37-56.  doi: 10.1007/s10440-008-9207-5.  Google Scholar [30] J. Simsen and J. Ferreira, A global attractor for a nonlocal parabolic problem, Nonlinear Stud., 21 (2014), 405-416.   Google Scholar [31] N. H. Tuan, V. V. Au, V. A. Khoa and D. Lesnic, Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction, Inverse Problems, 33 (2017), 40pp. doi: 10.1088/1361-6420/aa635f.  Google Scholar [32] H. T. Nguyen, V. A. Khoa and and V. A. Vo, Analysis of a quasi-reversibility method for a terminal value quasi-linear parabolic problem with measurements, SIAM J. Math. Anal., 51 (2019), 60–85.  Google Scholar [33] N. H. Tuan, D. H. Q. Nam and T. M. N. Vo, On a backward problem for the Kirchhoff's model of parabolic type, Comput. Math. Appl., 77 (2019), 15-33.  doi: 10.1016/j.camwa.2018.08.072.  Google Scholar

show all references

##### References:
 [1] R. M. P. Almeida, S. N. Antontsev, J. C. M. Duque and J. A. Ferreira, A reaction-diffusion model for the non-local coupled system: Existence, uniqueness, long-time behaviour and localization properties of solutions, IMA J. Appl. Math., 81 (2016), 344-364.  doi: 10.1093/imamat/hxv041.  Google Scholar [2] C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93.  doi: 10.1016/j.camwa.2005.01.008.  Google Scholar [3] A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305-330.  doi: 10.1090/S0002-9947-96-01532-2.  Google Scholar [4] G. Autuori, P. Pucci and M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., 196 (2010), 489-516.  doi: 10.1007/s00205-009-0241-x.  Google Scholar [5] G. Autuori, P. Pucci and M. C. Salvatori, Asymptotic stability for anisotropic Kirchhoff systems, J. Math. Anal. Appl., 352 (2009), 149-165.  doi: 10.1016/j.jmaa.2008.04.066.  Google Scholar [6] G. Autuori and P. Pucci, Kirchhoff systems with dynamic boundary conditions, Nonlinear Anal., 73 (2010), 1952-1965.  doi: 10.1016/j.na.2010.05.024.  Google Scholar [7] G. Avalos, I. Lasiecka and R. Rebarber, Boundary controllability of a coupled wave/Kirchhoff system, Systems Control Lett., 50 (2003), 331-341.  doi: 10.1016/S0167-6911(03)00179-8.  Google Scholar [8] S. Boulaaras and A. Allahem, Existence of positive solutions of nonlocal $p(x)$-Kirchhoff evolutionary systems via sub-super solutions concept, Symmetry, 11 (2019), 11pp. doi: 10.3390/sym11020253.  Google Scholar [9] M. Camurdan and R. Triggiani, Sharp regularity of a coupled system of a wave and a Kirchhoff equation with point control arising in noise reduction, Differential Integral Equations, 12 (1999), 101-118.   Google Scholar [10] T. Caraballo, M. Herrera-Cobos and P. Martín-Rubio, Long-time behavior of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms, Nonlinear Anal., 121 (2015), 3-18.  doi: 10.1016/j.na.2014.07.011.  Google Scholar [11] T. Caraballo, M. Herrera-Cobos and P. Marín-Rubio, Robustness of nonautonomous attractors for a family of nonlocal reaction-diffusion equations without uniqueness, Nonlinear Dynam., 84 (2016), 35-50.  doi: 10.1007/s11071-015-2200-4.  Google Scholar [12] T. Caraballo, M. Herrera-Cobos and P. Marín-Rubio, Global attractor for a nonlocal $p$-Laplacian equation without uniqueness of solution, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1801-1816.  doi: 10.3934/dcdsb.2017107.  Google Scholar [13] T. Caraballo, M. Herrera-Cobos and P. M. Rubio, Asymptotic behaviour of nonlocal $p$-Laplacian reactiondiffusion problems, J. Math. Anal. Appl., 459 (2018), 997-1015.  doi: 10.1016/j.jmaa.2017.11.013.  Google Scholar [14] M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30 (1997), 4619-4627.  doi: 10.1016/S0362-546X(97)00169-7.  Google Scholar [15] P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262.  doi: 10.1007/BF02100605.  Google Scholar [16] ç Dawidowski, The quasilinear parabolic Kirchhoff equation, Open Math., 15 (2017) 382–392. doi: 10.1515/math-2017-0036.  Google Scholar [17] Y. Fu and M. Xiang, Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent, Appl. Anal., 95 (2016), 524-544.  doi: 10.1080/00036811.2015.1022153.  Google Scholar [18] M. Ghisi and M. Gobbino, Hyperbolic-parabolic singular perturbation for mildly degenerate Kirchhoff equations: Time-decay estimates, J. Differential Equations, 245 (2008), 2979-3007.  doi: 10.1016/j.jde.2008.04.017.  Google Scholar [19] M. Ghisi and M. Gobbino, Hyperbolic-parabolic singular perturbation for nondegenerate Kirchhoff equations with critical weak dissipation, Math. Ann., 354 (2012), 1079-1102.  doi: 10.1007/s00208-011-0765-x.  Google Scholar [20] M. Gobbino, Quasilinear degenerate parabolic equations of Kirchhoff type, Math. Methods Appl. Sci., 22 (1999), 375-388.  doi: 10.1002/(SICI)1099-1476(19990325)22:5<375::AID-MMA26>3.0.CO;2-7.  Google Scholar [21] A. Hajej, Z. Hajjej and L. Tebou, Indirect stabilization of weakly coupled Kirchhoff plate and wave equations with frictional damping, J. Math. Anal. Appl., 474 (2019), 290-308.  doi: 10.1016/j.jmaa.2019.01.046.  Google Scholar [22] E. J. Hurtado, O. H. Miyagaki and R. d. S. Rodrigues, Existence and asymptotic behaviour for a Kirchhoff type equation with variable critical growth exponent, Milan J. Math., 85 (2017), 71-102.  doi: 10.1007/s00032-017-0266-9.  Google Scholar [23] J. I. Kanel and M. Kirane, Global solutions of reaction-diffusion systems with a balance law and nonlinearities of exponential growth, J. Differential Equations, 165 (2000), 24-41.  doi: 10.1006/jdeq.2000.3769.  Google Scholar [24] M. Kirane, Global bounds and asymptotics for a system of reaction-diffusion equations, J. Math. Anal. Appl., 138 (1989), 328-342.  doi: 10.1016/0022-247X(89)90293-X.  Google Scholar [25] M. Kirane and M. Qafsaoui, Global nonexistence for the Cauchy problem of some nonlinear reaction-diffusion systems, J. Math. Anal. Appl., 268 (2002), 217-243.  doi: 10.1006/jmaa.2001.7819.  Google Scholar [26] J. Límaco, H. R. Clark and L. A. Medeiros, On damped Kirchhoff equation with variable coefficients, J. Math. Anal. Appl., 307 (2005), 641-655.  doi: 10.1016/j.jmaa.2004.12.032.  Google Scholar [27] T. F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal., 63 (2005), 1967-1977.  doi: 10.1016/j.na.2005.03.021.  Google Scholar [28] H. Medekhelz, S. Boulaaras and R. Guefaifia, Existence of positive solutions for a class of Kirchhoff parabolic systems with multiple parameters, Applied Math. E-Notes, 18 (2018), 295-306.   Google Scholar [29] C. A. Raposo, M. Sepúlveda, O. V. Villagrán, D. C. Pereira and M. L. Santos, Solution and asymptotic behaviour for a nonlocal coupled system of reaction-diffusion, Acta Appl. Math., 102 (2008), 37-56.  doi: 10.1007/s10440-008-9207-5.  Google Scholar [30] J. Simsen and J. Ferreira, A global attractor for a nonlocal parabolic problem, Nonlinear Stud., 21 (2014), 405-416.   Google Scholar [31] N. H. Tuan, V. V. Au, V. A. Khoa and D. Lesnic, Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction, Inverse Problems, 33 (2017), 40pp. doi: 10.1088/1361-6420/aa635f.  Google Scholar [32] H. T. Nguyen, V. A. Khoa and and V. A. Vo, Analysis of a quasi-reversibility method for a terminal value quasi-linear parabolic problem with measurements, SIAM J. Math. Anal., 51 (2019), 60–85.  Google Scholar [33] N. H. Tuan, D. H. Q. Nam and T. M. N. Vo, On a backward problem for the Kirchhoff's model of parabolic type, Comput. Math. Appl., 77 (2019), 15-33.  doi: 10.1016/j.camwa.2018.08.072.  Google Scholar
 [1] Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074 [2] Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030 [3] Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 [4] Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287 [5] Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 [6] Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009 [7] Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027 [8] Yichen Zhang, Meiqiang Feng. A coupled $p$-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 [9] Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 [10] Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400 [11] Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002 [12] Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051 [13] Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357 [14] Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003 [15] Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006 [16] Yukio Kan-On. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3561-3570. doi: 10.3934/dcds.2020161 [17] Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354 [18] Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308 [19] Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018 [20] Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

2019 Impact Factor: 1.27

Article outline