-
Previous Article
Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems
- DCDS-B Home
- This Issue
-
Next Article
On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms
Ergodicity of stochastic damped Ostrovsky equation driven by white noise
1. | College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China |
2. | College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China |
The current paper is devoted to the stochastic damped Ostrovsky equation driven by white noise. By establishing the uniform estimates for the solution in $ H^1 $ norm, we prove the global well-posedness and the existence of invariant measure for stochastic damped Ostrovsky equation with random initial value. Moreover, we obtain the ergodicity of stochastic damped Ostrovsky equation with deterministic initial conditions.
References:
[1] |
A. de Bouard and E. Hausenblas,
The nonlinear Schrödinger equation driven by jump processes, J. Math. Anal. Appl., 475 (2019), 215-252.
doi: 10.1016/j.jmaa.2019.02.036. |
[2] |
A. de Bouard and A. Debussche,
On the stochastic Korteweg-de Vries equation, J. Funct. Anal., 154 (1998), 215-251.
doi: 10.1006/jfan.1997.3184. |
[3] |
A. de Bouard, A. Debussche and Y. Tsutsumi,
White noise driven Korteweg-de Vries equation, J. Funct. Anal., 169 (1999), 532-558.
doi: 10.1006/jfan.1999.3484. |
[4] |
T. Dankel Jr.,
On the stochastic Korteweg-de Vries equation driven by white noise, Differential Integral Equations, 13 (2000), 827-836.
|
[5] |
I. Ekren, I. Kukavica and M. Ziane,
Existence of invariant measure for the stochastic damped KdV equation, Indiana Univ. Math. J., 67 (2018), 1221-1254.
doi: 10.1512/iumj.2018.67.7365. |
[6] |
I. Ekren, I. Kukavica and M. Ziane,
Existence of invariant measures for the stochastic damped Schrödinger equation, Stoch. Partial Differ. Equ. Anal. Comput., 5 (2017), 343-367.
doi: 10.1007/s40072-016-0090-1. |
[7] |
V. M. Galkin and Y. A. Stepan'yants,
On the existence of stationary solitary waves in a rotating fluid, J. Appl. Math. Mech., 55 (1991), 939-943.
doi: 10.1016/0021-8928(91)90148-N. |
[8] |
P. Isaza and J. Mejía,
Cauchy problem for the Ostrovsky equation in spaces of low regularity, J. Differential Equations, 230 (2006), 661-681.
doi: 10.1016/j.jde.2006.04.007. |
[9] |
P. Isaza and J. Mejía,
Global Cauchy problem for the Ostrovsky equation, Nonlinear Anal., 67 (2007), 1482-1503.
doi: 10.1016/j.na.2006.07.031. |
[10] |
P. Isazaa and J. Mejía,
Local well-posedness and quantitative ill-posedness for the Ostrovsky equation, Nonlinear Anal., 70 (2009), 2306-2316.
doi: 10.1016/j.na.2008.03.010. |
[11] |
S. Li, Well-Posedness and Asymptotic Behavior for Some Nonlinear Evolution Equations, Ph.D thesis, 2015. Google Scholar |
[12] |
F. Linares and A. Milanés,
Local and global well-posedness for the Ostrovsky equation, J. Differential Equations, 222 (2006), 325-340.
doi: 10.1016/j.jde.2005.07.023. |
[13] |
L. Ostrovsky, Nonlinear internal waves in a rotating ocean, Okeanologiya, 18 (1978), 181-191. Google Scholar |
[14] |
S. Peszat and J. Zabczyk, Stochatsic Partial Diffrential Equations with Lévy Noise. An Evolution Equation Approach, Encyclopedia of Mathematics and its Applications, 113, Cambridge University Press, Cambridge, 2007.
doi: 10.1017/CBO9780511721373.![]() ![]() |
[15] |
G. Da Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, London Mathematical Society Lecture Note Series, 229, Cambridge University Press, Cambridge, 1996.
doi: 10.1017/CBO9780511662829.![]() ![]() |
[16] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() |
[17] |
W. Yan, Y. Li, J. Huang and J. Duan, The Cauchy problem for the Ostrovsky equation with positive dispersion, NoDEA Nonlinear Differential Equations Appl., 25 (2018), 37pp.
doi: 10.1007/s00030-018-0514-x. |
[18] |
W. Yan, M. Yang and J. Duan,
White noise driven Ostrovsky equation, J. Differential Equations, 267 (2019), 5701-5735.
doi: 10.1016/j.jde.2019.06.003. |
show all references
References:
[1] |
A. de Bouard and E. Hausenblas,
The nonlinear Schrödinger equation driven by jump processes, J. Math. Anal. Appl., 475 (2019), 215-252.
doi: 10.1016/j.jmaa.2019.02.036. |
[2] |
A. de Bouard and A. Debussche,
On the stochastic Korteweg-de Vries equation, J. Funct. Anal., 154 (1998), 215-251.
doi: 10.1006/jfan.1997.3184. |
[3] |
A. de Bouard, A. Debussche and Y. Tsutsumi,
White noise driven Korteweg-de Vries equation, J. Funct. Anal., 169 (1999), 532-558.
doi: 10.1006/jfan.1999.3484. |
[4] |
T. Dankel Jr.,
On the stochastic Korteweg-de Vries equation driven by white noise, Differential Integral Equations, 13 (2000), 827-836.
|
[5] |
I. Ekren, I. Kukavica and M. Ziane,
Existence of invariant measure for the stochastic damped KdV equation, Indiana Univ. Math. J., 67 (2018), 1221-1254.
doi: 10.1512/iumj.2018.67.7365. |
[6] |
I. Ekren, I. Kukavica and M. Ziane,
Existence of invariant measures for the stochastic damped Schrödinger equation, Stoch. Partial Differ. Equ. Anal. Comput., 5 (2017), 343-367.
doi: 10.1007/s40072-016-0090-1. |
[7] |
V. M. Galkin and Y. A. Stepan'yants,
On the existence of stationary solitary waves in a rotating fluid, J. Appl. Math. Mech., 55 (1991), 939-943.
doi: 10.1016/0021-8928(91)90148-N. |
[8] |
P. Isaza and J. Mejía,
Cauchy problem for the Ostrovsky equation in spaces of low regularity, J. Differential Equations, 230 (2006), 661-681.
doi: 10.1016/j.jde.2006.04.007. |
[9] |
P. Isaza and J. Mejía,
Global Cauchy problem for the Ostrovsky equation, Nonlinear Anal., 67 (2007), 1482-1503.
doi: 10.1016/j.na.2006.07.031. |
[10] |
P. Isazaa and J. Mejía,
Local well-posedness and quantitative ill-posedness for the Ostrovsky equation, Nonlinear Anal., 70 (2009), 2306-2316.
doi: 10.1016/j.na.2008.03.010. |
[11] |
S. Li, Well-Posedness and Asymptotic Behavior for Some Nonlinear Evolution Equations, Ph.D thesis, 2015. Google Scholar |
[12] |
F. Linares and A. Milanés,
Local and global well-posedness for the Ostrovsky equation, J. Differential Equations, 222 (2006), 325-340.
doi: 10.1016/j.jde.2005.07.023. |
[13] |
L. Ostrovsky, Nonlinear internal waves in a rotating ocean, Okeanologiya, 18 (1978), 181-191. Google Scholar |
[14] |
S. Peszat and J. Zabczyk, Stochatsic Partial Diffrential Equations with Lévy Noise. An Evolution Equation Approach, Encyclopedia of Mathematics and its Applications, 113, Cambridge University Press, Cambridge, 2007.
doi: 10.1017/CBO9780511721373.![]() ![]() |
[15] |
G. Da Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, London Mathematical Society Lecture Note Series, 229, Cambridge University Press, Cambridge, 1996.
doi: 10.1017/CBO9780511662829.![]() ![]() |
[16] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() |
[17] |
W. Yan, Y. Li, J. Huang and J. Duan, The Cauchy problem for the Ostrovsky equation with positive dispersion, NoDEA Nonlinear Differential Equations Appl., 25 (2018), 37pp.
doi: 10.1007/s00030-018-0514-x. |
[18] |
W. Yan, M. Yang and J. Duan,
White noise driven Ostrovsky equation, J. Differential Equations, 267 (2019), 5701-5735.
doi: 10.1016/j.jde.2019.06.003. |
[1] |
Alessandro Gondolo, Fernando Guevara Vasquez. Characterization and synthesis of Rayleigh damped elastodynamic networks. Networks & Heterogeneous Media, 2014, 9 (2) : 299-314. doi: 10.3934/nhm.2014.9.299 |
[2] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[3] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[4] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[5] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[6] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[7] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[8] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[9] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[10] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[11] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[12] |
Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186 |
[13] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[14] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[15] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[16] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454 |
[17] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[18] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[19] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[20] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]