doi: 10.3934/dcdsb.2020175

Ergodicity of stochastic damped Ostrovsky equation driven by white noise

1. 

College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China

2. 

College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China

* Corresponding author: Jianhua Huang

Received  December 2019 Revised  February 2020 Published  May 2020

Fund Project: The authors are supported by the NSF of China(No.11771449)

The current paper is devoted to the stochastic damped Ostrovsky equation driven by white noise. By establishing the uniform estimates for the solution in $ H^1 $ norm, we prove the global well-posedness and the existence of invariant measure for stochastic damped Ostrovsky equation with random initial value. Moreover, we obtain the ergodicity of stochastic damped Ostrovsky equation with deterministic initial conditions.

Citation: Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020175
References:
[1]

A. de Bouard and E. Hausenblas, The nonlinear Schrödinger equation driven by jump processes, J. Math. Anal. Appl., 475 (2019), 215-252.  doi: 10.1016/j.jmaa.2019.02.036.  Google Scholar

[2]

A. de Bouard and A. Debussche, On the stochastic Korteweg-de Vries equation, J. Funct. Anal., 154 (1998), 215-251.  doi: 10.1006/jfan.1997.3184.  Google Scholar

[3]

A. de BouardA. Debussche and Y. Tsutsumi, White noise driven Korteweg-de Vries equation, J. Funct. Anal., 169 (1999), 532-558.  doi: 10.1006/jfan.1999.3484.  Google Scholar

[4]

T. Dankel Jr., On the stochastic Korteweg-de Vries equation driven by white noise, Differential Integral Equations, 13 (2000), 827-836.   Google Scholar

[5]

I. EkrenI. Kukavica and M. Ziane, Existence of invariant measure for the stochastic damped KdV equation, Indiana Univ. Math. J., 67 (2018), 1221-1254.  doi: 10.1512/iumj.2018.67.7365.  Google Scholar

[6]

I. EkrenI. Kukavica and M. Ziane, Existence of invariant measures for the stochastic damped Schrödinger equation, Stoch. Partial Differ. Equ. Anal. Comput., 5 (2017), 343-367.  doi: 10.1007/s40072-016-0090-1.  Google Scholar

[7]

V. M. Galkin and Y. A. Stepan'yants, On the existence of stationary solitary waves in a rotating fluid, J. Appl. Math. Mech., 55 (1991), 939-943.  doi: 10.1016/0021-8928(91)90148-N.  Google Scholar

[8]

P. Isaza and J. Mejía, Cauchy problem for the Ostrovsky equation in spaces of low regularity, J. Differential Equations, 230 (2006), 661-681.  doi: 10.1016/j.jde.2006.04.007.  Google Scholar

[9]

P. Isaza and J. Mejía, Global Cauchy problem for the Ostrovsky equation, Nonlinear Anal., 67 (2007), 1482-1503.  doi: 10.1016/j.na.2006.07.031.  Google Scholar

[10]

P. Isazaa and J. Mejía, Local well-posedness and quantitative ill-posedness for the Ostrovsky equation, Nonlinear Anal., 70 (2009), 2306-2316.  doi: 10.1016/j.na.2008.03.010.  Google Scholar

[11]

S. Li, Well-Posedness and Asymptotic Behavior for Some Nonlinear Evolution Equations, Ph.D thesis, 2015. Google Scholar

[12]

F. Linares and A. Milanés, Local and global well-posedness for the Ostrovsky equation, J. Differential Equations, 222 (2006), 325-340.  doi: 10.1016/j.jde.2005.07.023.  Google Scholar

[13]

L. Ostrovsky, Nonlinear internal waves in a rotating ocean, Okeanologiya, 18 (1978), 181-191.   Google Scholar

[14] S. Peszat and J. Zabczyk, Stochatsic Partial Diffrential Equations with Lévy Noise. An Evolution Equation Approach, Encyclopedia of Mathematics and its Applications, 113, Cambridge University Press, Cambridge, 2007.  doi: 10.1017/CBO9780511721373.  Google Scholar
[15] G. Da Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, London Mathematical Society Lecture Note Series, 229, Cambridge University Press, Cambridge, 1996.  doi: 10.1017/CBO9780511662829.  Google Scholar
[16] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9780511666223.  Google Scholar
[17]

W. Yan, Y. Li, J. Huang and J. Duan, The Cauchy problem for the Ostrovsky equation with positive dispersion, NoDEA Nonlinear Differential Equations Appl., 25 (2018), 37pp. doi: 10.1007/s00030-018-0514-x.  Google Scholar

[18]

W. YanM. Yang and J. Duan, White noise driven Ostrovsky equation, J. Differential Equations, 267 (2019), 5701-5735.  doi: 10.1016/j.jde.2019.06.003.  Google Scholar

show all references

References:
[1]

A. de Bouard and E. Hausenblas, The nonlinear Schrödinger equation driven by jump processes, J. Math. Anal. Appl., 475 (2019), 215-252.  doi: 10.1016/j.jmaa.2019.02.036.  Google Scholar

[2]

A. de Bouard and A. Debussche, On the stochastic Korteweg-de Vries equation, J. Funct. Anal., 154 (1998), 215-251.  doi: 10.1006/jfan.1997.3184.  Google Scholar

[3]

A. de BouardA. Debussche and Y. Tsutsumi, White noise driven Korteweg-de Vries equation, J. Funct. Anal., 169 (1999), 532-558.  doi: 10.1006/jfan.1999.3484.  Google Scholar

[4]

T. Dankel Jr., On the stochastic Korteweg-de Vries equation driven by white noise, Differential Integral Equations, 13 (2000), 827-836.   Google Scholar

[5]

I. EkrenI. Kukavica and M. Ziane, Existence of invariant measure for the stochastic damped KdV equation, Indiana Univ. Math. J., 67 (2018), 1221-1254.  doi: 10.1512/iumj.2018.67.7365.  Google Scholar

[6]

I. EkrenI. Kukavica and M. Ziane, Existence of invariant measures for the stochastic damped Schrödinger equation, Stoch. Partial Differ. Equ. Anal. Comput., 5 (2017), 343-367.  doi: 10.1007/s40072-016-0090-1.  Google Scholar

[7]

V. M. Galkin and Y. A. Stepan'yants, On the existence of stationary solitary waves in a rotating fluid, J. Appl. Math. Mech., 55 (1991), 939-943.  doi: 10.1016/0021-8928(91)90148-N.  Google Scholar

[8]

P. Isaza and J. Mejía, Cauchy problem for the Ostrovsky equation in spaces of low regularity, J. Differential Equations, 230 (2006), 661-681.  doi: 10.1016/j.jde.2006.04.007.  Google Scholar

[9]

P. Isaza and J. Mejía, Global Cauchy problem for the Ostrovsky equation, Nonlinear Anal., 67 (2007), 1482-1503.  doi: 10.1016/j.na.2006.07.031.  Google Scholar

[10]

P. Isazaa and J. Mejía, Local well-posedness and quantitative ill-posedness for the Ostrovsky equation, Nonlinear Anal., 70 (2009), 2306-2316.  doi: 10.1016/j.na.2008.03.010.  Google Scholar

[11]

S. Li, Well-Posedness and Asymptotic Behavior for Some Nonlinear Evolution Equations, Ph.D thesis, 2015. Google Scholar

[12]

F. Linares and A. Milanés, Local and global well-posedness for the Ostrovsky equation, J. Differential Equations, 222 (2006), 325-340.  doi: 10.1016/j.jde.2005.07.023.  Google Scholar

[13]

L. Ostrovsky, Nonlinear internal waves in a rotating ocean, Okeanologiya, 18 (1978), 181-191.   Google Scholar

[14] S. Peszat and J. Zabczyk, Stochatsic Partial Diffrential Equations with Lévy Noise. An Evolution Equation Approach, Encyclopedia of Mathematics and its Applications, 113, Cambridge University Press, Cambridge, 2007.  doi: 10.1017/CBO9780511721373.  Google Scholar
[15] G. Da Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, London Mathematical Society Lecture Note Series, 229, Cambridge University Press, Cambridge, 1996.  doi: 10.1017/CBO9780511662829.  Google Scholar
[16] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9780511666223.  Google Scholar
[17]

W. Yan, Y. Li, J. Huang and J. Duan, The Cauchy problem for the Ostrovsky equation with positive dispersion, NoDEA Nonlinear Differential Equations Appl., 25 (2018), 37pp. doi: 10.1007/s00030-018-0514-x.  Google Scholar

[18]

W. YanM. Yang and J. Duan, White noise driven Ostrovsky equation, J. Differential Equations, 267 (2019), 5701-5735.  doi: 10.1016/j.jde.2019.06.003.  Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[4]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[5]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[6]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[7]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[8]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[9]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[10]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[11]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[12]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[13]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[14]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[15]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[16]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[17]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[18]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[19]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[20]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (74)
  • HTML views (217)
  • Cited by (0)

Other articles
by authors

[Back to Top]