doi: 10.3934/dcdsb.2020176

Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems

1. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

2. 

School of Mathematics and Statistics, Xinyang Normal University, Henan 464000, China

* Corresponding author: Chun-Lei Tang

Received  January 2019 Revised  March 2020 Published  June 2020

Fund Project: The first author is supported by Fundamental Research Funds for the Central Universities (XDJK2020B051) and National Natural Science Foundation of China(No. 11601438, 11971393)

In this paper, we consider a class of second-order Hamiltonian systems of the form
$ \ddot{u}(t)-L(t) u(t)+\nabla W(t,u(t)) = 0 $
where
$ L:R\rightarrow R^{N^2} $
and
$ W \in C^1(R\times R^N, R) $
are asymptotically periodic in
$ t $
at infinity. Under the reformative perturbation conditions and weaker superquadratic conditions on the nonlinearity, the existence of a ground state homoclinic orbit is established. The main tools employed here are the local mountain pass theorem and the concentration-compactness principle.
Citation: Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020176
References:
[1]

C. O. Alves, P. C. Carrião and O. H. Miyagaki, Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation, Appl. Math. Lett., 16 (2003), no. 5,639–642. doi: 10.1016/S0893-9659(03)00059-4.  Google Scholar

[2]

A. Andrzej and T. Weth, The Method of Nehari Manifold. Handbook Of Nonconvex Analysis and Applications, Int. Press, Somerville, MA, 2010,597-632.  Google Scholar

[3]

G. Arioli and A. Szulkin, Homoclinic solution for a class of systems of second order differential equations, Topol. Methods Nonlinear Anal., 6 (1995), no. 1,189–197. doi: 10.12775/TMNA.1995.040.  Google Scholar

[4]

P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal., 7 (1983), no. 9,981–1012. doi: 10.1016/0362-546X(83)90115-3.  Google Scholar

[5]

G. W. Chen, Superquadratic or asymptotically quadratic Hamiltonian systems: Ground state homoclinic orbits, Ann. Mat. Pura Appl. (4), 194 (2015), no. 3,903–918. doi: 10.1007/s10231-014-0403-9.  Google Scholar

[6]

V. Coti Zelati, I. Ekeland and E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), no. 1,133–160. doi: 10.1007/BF01444526.  Google Scholar

[7]

V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), no. 4,693–727. doi: 10.1090/S0894-0347-1991-1119200-3.  Google Scholar

[8]

Y. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear Anal., 25 (1995), no. 11, 1095–1113. doi: 10.1016/0362-546X(94)00229-B.  Google Scholar

[9]

Y. Ding and C. Lee, Homoclinics for asymptotically quadratic and superquadratic Hamiltonian systems, Nonlinear Anal., 71 (2009), no. 5-6, 1395–1413. doi: 10.1016/j.na.2008.10.116.  Google Scholar

[10]

P. L. Felmer and E. A. de B. Silva, Homoclinic and periodic orbits for Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), no. 2,285–301.  Google Scholar

[11]

P. Korman and A. C. Lazer, Homoclinic orbits for a class of symmetric Hamiltonian systems, Electron. J. Differential Equations, (1994), no. 1, 10 pp.  Google Scholar

[12] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968.   Google Scholar
[13]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), no. 2,109–145. doi: 10.1016/S0294-1449(16)30428-0.  Google Scholar

[14]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), no. 4,223–283. doi: 10.1016/S0294-1449(16)30422-X.  Google Scholar

[15]

H. F. Lins and E. A. de B. Silva, Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal., 71 (2009), no. 7-8, 2890–2905. doi: 10.1016/j.na.2009.01.171.  Google Scholar

[16]

Z. LiuS. Guo and Z. Zhang, Homoclinic orbits for the second-order Hamiltonian systems, Nonlinear Anal. Real World Appl., 36 (2017), 116-138.  doi: 10.1016/j.nonrwa.2016.12.006.  Google Scholar

[17]

X. Lv, S. Lu and P. Yan, Existence of homoclinic solutions for a class of second-order Hamiltonian systems, Nonlinear Anal., 72 (2010), no. 1,390–398. doi: 10.1016/j.na.2009.06.073.  Google Scholar

[18]

Y. Lv and C.-L. Tang, Existence of even homoclinic orbits for second-order Hamiltonian systems, Nonlinear Anal., 67 (2007), no. 7, 2189–2198. doi: 10.1016/j.na.2006.08.043.  Google Scholar

[19]

W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems, Different Integral Equations, 5 (1992), no. 5, 1115–1120.  Google Scholar

[20]

Z.-Q. Ou and C.-L. Tang, Existence of homoclinic solution for the second order Hamiltonian systems, J. Math. Anal. Appl., 291 (2004), no. 1,203–213. doi: 10.1016/j.jmaa.2003.10.026.  Google Scholar

[21]

E. Paturel, Multiple homoclinic orbits for a class of Hamiltonian systems, Calc. Var. Partial Differential Equations, 12 (2001), no. 2,117–143. doi: 10.1007/PL00009909.  Google Scholar

[22]

H. Poincaré, Les méthods nouvelles de la mécanique céleste, Gauthier-Villars, Paris, 1897–1899. Google Scholar

[23]

P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect., 114 (1990), no. 1-2, 33–38. doi: 10.1017/S0308210500024240.  Google Scholar

[24]

P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, Vol. 65, American Mathematical Society, Providence, RI, 1986. doi: 10.1090/cbms/065.  Google Scholar

[25]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), no. 2,270–291. doi: 10.1007/BF00946631.  Google Scholar

[26]

P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206 (1991), no. 3,473–499. doi: 10.1007/BF02571356.  Google Scholar

[27]

Y. Rong and Z. Zhang, Homoclinic solutions for a class of second order Hamiltonian systems, Results Math., 61 (2012), no. 1-2,195–208. doi: 10.1007/s00025-010-0088-3.  Google Scholar

[28]

E. SerraM. Tarallo and S. Terracini, Subharmonic solutions to second-order differential equations with periodic nonlinearities, Nonlinear Anal., 41 (2000), 649-667.  doi: 10.1016/S0362-546X(98)00302-2.  Google Scholar

[29]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, Vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[30]

M. Yang and Z. Han, Infinitely many homoclinic solutions for second-order Hamiltonian systems with odd nonlinearities, Nonlinear Anal., 74 (2011), no. 7, 2635–2646. doi: 10.1016/j.na.2010.12.019.  Google Scholar

[31]

J. Yang and F. Zhang, Infinitely many homoclinic orbits for the second-order Hamiltonian systems with super-quadratic potentials, Nonlinear Anal. Real World Appl., 10 (2009), no. 3, 1417–1423. doi: 10.1016/j.nonrwa.2008.01.013.  Google Scholar

[32]

Q. Zhang and C. Liu, Infinitely many homoclinic solutions for second order Hamiltonian systems, Nonlinear Anal., 72 (2010), no. 2,894–903. doi: 10.1016/j.na.2009.07.021.  Google Scholar

[33]

Z. Zhang and R. Yuan, Homoclinic solutions for a class of non-autonomous subquadratic second-order Hamiltonian systems, Nonlinear Anal., 71 (2009), no. 9, 4125–4130. doi: 10.1016/j.na.2009.02.071.  Google Scholar

show all references

References:
[1]

C. O. Alves, P. C. Carrião and O. H. Miyagaki, Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation, Appl. Math. Lett., 16 (2003), no. 5,639–642. doi: 10.1016/S0893-9659(03)00059-4.  Google Scholar

[2]

A. Andrzej and T. Weth, The Method of Nehari Manifold. Handbook Of Nonconvex Analysis and Applications, Int. Press, Somerville, MA, 2010,597-632.  Google Scholar

[3]

G. Arioli and A. Szulkin, Homoclinic solution for a class of systems of second order differential equations, Topol. Methods Nonlinear Anal., 6 (1995), no. 1,189–197. doi: 10.12775/TMNA.1995.040.  Google Scholar

[4]

P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal., 7 (1983), no. 9,981–1012. doi: 10.1016/0362-546X(83)90115-3.  Google Scholar

[5]

G. W. Chen, Superquadratic or asymptotically quadratic Hamiltonian systems: Ground state homoclinic orbits, Ann. Mat. Pura Appl. (4), 194 (2015), no. 3,903–918. doi: 10.1007/s10231-014-0403-9.  Google Scholar

[6]

V. Coti Zelati, I. Ekeland and E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), no. 1,133–160. doi: 10.1007/BF01444526.  Google Scholar

[7]

V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), no. 4,693–727. doi: 10.1090/S0894-0347-1991-1119200-3.  Google Scholar

[8]

Y. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear Anal., 25 (1995), no. 11, 1095–1113. doi: 10.1016/0362-546X(94)00229-B.  Google Scholar

[9]

Y. Ding and C. Lee, Homoclinics for asymptotically quadratic and superquadratic Hamiltonian systems, Nonlinear Anal., 71 (2009), no. 5-6, 1395–1413. doi: 10.1016/j.na.2008.10.116.  Google Scholar

[10]

P. L. Felmer and E. A. de B. Silva, Homoclinic and periodic orbits for Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), no. 2,285–301.  Google Scholar

[11]

P. Korman and A. C. Lazer, Homoclinic orbits for a class of symmetric Hamiltonian systems, Electron. J. Differential Equations, (1994), no. 1, 10 pp.  Google Scholar

[12] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968.   Google Scholar
[13]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), no. 2,109–145. doi: 10.1016/S0294-1449(16)30428-0.  Google Scholar

[14]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), no. 4,223–283. doi: 10.1016/S0294-1449(16)30422-X.  Google Scholar

[15]

H. F. Lins and E. A. de B. Silva, Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal., 71 (2009), no. 7-8, 2890–2905. doi: 10.1016/j.na.2009.01.171.  Google Scholar

[16]

Z. LiuS. Guo and Z. Zhang, Homoclinic orbits for the second-order Hamiltonian systems, Nonlinear Anal. Real World Appl., 36 (2017), 116-138.  doi: 10.1016/j.nonrwa.2016.12.006.  Google Scholar

[17]

X. Lv, S. Lu and P. Yan, Existence of homoclinic solutions for a class of second-order Hamiltonian systems, Nonlinear Anal., 72 (2010), no. 1,390–398. doi: 10.1016/j.na.2009.06.073.  Google Scholar

[18]

Y. Lv and C.-L. Tang, Existence of even homoclinic orbits for second-order Hamiltonian systems, Nonlinear Anal., 67 (2007), no. 7, 2189–2198. doi: 10.1016/j.na.2006.08.043.  Google Scholar

[19]

W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems, Different Integral Equations, 5 (1992), no. 5, 1115–1120.  Google Scholar

[20]

Z.-Q. Ou and C.-L. Tang, Existence of homoclinic solution for the second order Hamiltonian systems, J. Math. Anal. Appl., 291 (2004), no. 1,203–213. doi: 10.1016/j.jmaa.2003.10.026.  Google Scholar

[21]

E. Paturel, Multiple homoclinic orbits for a class of Hamiltonian systems, Calc. Var. Partial Differential Equations, 12 (2001), no. 2,117–143. doi: 10.1007/PL00009909.  Google Scholar

[22]

H. Poincaré, Les méthods nouvelles de la mécanique céleste, Gauthier-Villars, Paris, 1897–1899. Google Scholar

[23]

P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect., 114 (1990), no. 1-2, 33–38. doi: 10.1017/S0308210500024240.  Google Scholar

[24]

P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, Vol. 65, American Mathematical Society, Providence, RI, 1986. doi: 10.1090/cbms/065.  Google Scholar

[25]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), no. 2,270–291. doi: 10.1007/BF00946631.  Google Scholar

[26]

P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206 (1991), no. 3,473–499. doi: 10.1007/BF02571356.  Google Scholar

[27]

Y. Rong and Z. Zhang, Homoclinic solutions for a class of second order Hamiltonian systems, Results Math., 61 (2012), no. 1-2,195–208. doi: 10.1007/s00025-010-0088-3.  Google Scholar

[28]

E. SerraM. Tarallo and S. Terracini, Subharmonic solutions to second-order differential equations with periodic nonlinearities, Nonlinear Anal., 41 (2000), 649-667.  doi: 10.1016/S0362-546X(98)00302-2.  Google Scholar

[29]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, Vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[30]

M. Yang and Z. Han, Infinitely many homoclinic solutions for second-order Hamiltonian systems with odd nonlinearities, Nonlinear Anal., 74 (2011), no. 7, 2635–2646. doi: 10.1016/j.na.2010.12.019.  Google Scholar

[31]

J. Yang and F. Zhang, Infinitely many homoclinic orbits for the second-order Hamiltonian systems with super-quadratic potentials, Nonlinear Anal. Real World Appl., 10 (2009), no. 3, 1417–1423. doi: 10.1016/j.nonrwa.2008.01.013.  Google Scholar

[32]

Q. Zhang and C. Liu, Infinitely many homoclinic solutions for second order Hamiltonian systems, Nonlinear Anal., 72 (2010), no. 2,894–903. doi: 10.1016/j.na.2009.07.021.  Google Scholar

[33]

Z. Zhang and R. Yuan, Homoclinic solutions for a class of non-autonomous subquadratic second-order Hamiltonian systems, Nonlinear Anal., 71 (2009), no. 9, 4125–4130. doi: 10.1016/j.na.2009.02.071.  Google Scholar

[1]

Claudianor O. Alves, Giovany M. Figueiredo, Marcelo F. Furtado. Multiplicity of solutions for elliptic systems via local Mountain Pass method. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1745-1758. doi: 10.3934/cpaa.2009.8.1745

[2]

Xiaoping Wang. Ground state homoclinic solutions for a second-order Hamiltonian system. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2163-2175. doi: 10.3934/dcdss.2019139

[3]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

[4]

Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003

[5]

Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions. Communications on Pure & Applied Analysis, 2019, 18 (1) : 425-434. doi: 10.3934/cpaa.2019021

[6]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[7]

Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883

[8]

Dengfeng Lü. Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1781-1795. doi: 10.3934/cpaa.2016014

[9]

Claudianor Oliveira Alves, M. A.S. Souto. On existence and concentration behavior of ground state solutions for a class of problems with critical growth. Communications on Pure & Applied Analysis, 2002, 1 (3) : 417-431. doi: 10.3934/cpaa.2002.1.417

[10]

Claudianor O. Alves, Geilson F. Germano. Existence of ground state solution and concentration of maxima for a class of indefinite variational problems. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2887-2906. doi: 10.3934/cpaa.2020126

[11]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[12]

Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

[13]

Jian Zhang, Wen Zhang, Xianhua Tang. Ground state solutions for Hamiltonian elliptic system with inverse square potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4565-4583. doi: 10.3934/dcds.2017195

[14]

Jian Zhang, Wen Zhang. Existence and decay property of ground state solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2433-2455. doi: 10.3934/cpaa.2019110

[15]

S. Secchi, C. A. Stuart. Global bifurcation of homoclinic solutions of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1493-1518. doi: 10.3934/dcds.2003.9.1493

[16]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Homoclinic orbits for a class of asymptotically quadratic Hamiltonian systems. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2855-2878. doi: 10.3934/cpaa.2019128

[17]

W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351

[18]

Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623

[19]

Addolorata Salvatore. Multiple homoclinic orbits for a class of second order perturbed Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 778-787. doi: 10.3934/proc.2003.2003.778

[20]

Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1929-1940. doi: 10.3934/cpaa.2015.14.1929

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (14)
  • HTML views (37)
  • Cited by (0)

Other articles
by authors

[Back to Top]