March  2021, 26(3): 1627-1652. doi: 10.3934/dcdsb.2020176

Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems

1. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

2. 

School of Mathematics and Statistics, Xinyang Normal University, Henan 464000, China

* Corresponding author: Chun-Lei Tang

Received  January 2019 Revised  March 2020 Published  June 2020

Fund Project: The first author is supported by Fundamental Research Funds for the Central Universities (XDJK2020B051) and National Natural Science Foundation of China(No. 11601438, 11971393)

In this paper, we consider a class of second-order Hamiltonian systems of the form
$ \ddot{u}(t)-L(t) u(t)+\nabla W(t,u(t)) = 0 $
where
$ L:R\rightarrow R^{N^2} $
and
$ W \in C^1(R\times R^N, R) $
are asymptotically periodic in
$ t $
at infinity. Under the reformative perturbation conditions and weaker superquadratic conditions on the nonlinearity, the existence of a ground state homoclinic orbit is established. The main tools employed here are the local mountain pass theorem and the concentration-compactness principle.
Citation: Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176
References:
[1]

C. O. Alves, P. C. Carrião and O. H. Miyagaki, Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation, Appl. Math. Lett., 16 (2003), no. 5,639–642. doi: 10.1016/S0893-9659(03)00059-4.  Google Scholar

[2]

A. Andrzej and T. Weth, The Method of Nehari Manifold. Handbook Of Nonconvex Analysis and Applications, Int. Press, Somerville, MA, 2010,597-632.  Google Scholar

[3]

G. Arioli and A. Szulkin, Homoclinic solution for a class of systems of second order differential equations, Topol. Methods Nonlinear Anal., 6 (1995), no. 1,189–197. doi: 10.12775/TMNA.1995.040.  Google Scholar

[4]

P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal., 7 (1983), no. 9,981–1012. doi: 10.1016/0362-546X(83)90115-3.  Google Scholar

[5]

G. W. Chen, Superquadratic or asymptotically quadratic Hamiltonian systems: Ground state homoclinic orbits, Ann. Mat. Pura Appl. (4), 194 (2015), no. 3,903–918. doi: 10.1007/s10231-014-0403-9.  Google Scholar

[6]

V. Coti Zelati, I. Ekeland and E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), no. 1,133–160. doi: 10.1007/BF01444526.  Google Scholar

[7]

V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), no. 4,693–727. doi: 10.1090/S0894-0347-1991-1119200-3.  Google Scholar

[8]

Y. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear Anal., 25 (1995), no. 11, 1095–1113. doi: 10.1016/0362-546X(94)00229-B.  Google Scholar

[9]

Y. Ding and C. Lee, Homoclinics for asymptotically quadratic and superquadratic Hamiltonian systems, Nonlinear Anal., 71 (2009), no. 5-6, 1395–1413. doi: 10.1016/j.na.2008.10.116.  Google Scholar

[10]

P. L. Felmer and E. A. de B. Silva, Homoclinic and periodic orbits for Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), no. 2,285–301.  Google Scholar

[11]

P. Korman and A. C. Lazer, Homoclinic orbits for a class of symmetric Hamiltonian systems, Electron. J. Differential Equations, (1994), no. 1, 10 pp.  Google Scholar

[12] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968.   Google Scholar
[13]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), no. 2,109–145. doi: 10.1016/S0294-1449(16)30428-0.  Google Scholar

[14]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), no. 4,223–283. doi: 10.1016/S0294-1449(16)30422-X.  Google Scholar

[15]

H. F. Lins and E. A. de B. Silva, Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal., 71 (2009), no. 7-8, 2890–2905. doi: 10.1016/j.na.2009.01.171.  Google Scholar

[16]

Z. LiuS. Guo and Z. Zhang, Homoclinic orbits for the second-order Hamiltonian systems, Nonlinear Anal. Real World Appl., 36 (2017), 116-138.  doi: 10.1016/j.nonrwa.2016.12.006.  Google Scholar

[17]

X. Lv, S. Lu and P. Yan, Existence of homoclinic solutions for a class of second-order Hamiltonian systems, Nonlinear Anal., 72 (2010), no. 1,390–398. doi: 10.1016/j.na.2009.06.073.  Google Scholar

[18]

Y. Lv and C.-L. Tang, Existence of even homoclinic orbits for second-order Hamiltonian systems, Nonlinear Anal., 67 (2007), no. 7, 2189–2198. doi: 10.1016/j.na.2006.08.043.  Google Scholar

[19]

W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems, Different Integral Equations, 5 (1992), no. 5, 1115–1120.  Google Scholar

[20]

Z.-Q. Ou and C.-L. Tang, Existence of homoclinic solution for the second order Hamiltonian systems, J. Math. Anal. Appl., 291 (2004), no. 1,203–213. doi: 10.1016/j.jmaa.2003.10.026.  Google Scholar

[21]

E. Paturel, Multiple homoclinic orbits for a class of Hamiltonian systems, Calc. Var. Partial Differential Equations, 12 (2001), no. 2,117–143. doi: 10.1007/PL00009909.  Google Scholar

[22]

H. Poincaré, Les méthods nouvelles de la mécanique céleste, Gauthier-Villars, Paris, 1897–1899. Google Scholar

[23]

P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect., 114 (1990), no. 1-2, 33–38. doi: 10.1017/S0308210500024240.  Google Scholar

[24]

P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, Vol. 65, American Mathematical Society, Providence, RI, 1986. doi: 10.1090/cbms/065.  Google Scholar

[25]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), no. 2,270–291. doi: 10.1007/BF00946631.  Google Scholar

[26]

P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206 (1991), no. 3,473–499. doi: 10.1007/BF02571356.  Google Scholar

[27]

Y. Rong and Z. Zhang, Homoclinic solutions for a class of second order Hamiltonian systems, Results Math., 61 (2012), no. 1-2,195–208. doi: 10.1007/s00025-010-0088-3.  Google Scholar

[28]

E. SerraM. Tarallo and S. Terracini, Subharmonic solutions to second-order differential equations with periodic nonlinearities, Nonlinear Anal., 41 (2000), 649-667.  doi: 10.1016/S0362-546X(98)00302-2.  Google Scholar

[29]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, Vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[30]

M. Yang and Z. Han, Infinitely many homoclinic solutions for second-order Hamiltonian systems with odd nonlinearities, Nonlinear Anal., 74 (2011), no. 7, 2635–2646. doi: 10.1016/j.na.2010.12.019.  Google Scholar

[31]

J. Yang and F. Zhang, Infinitely many homoclinic orbits for the second-order Hamiltonian systems with super-quadratic potentials, Nonlinear Anal. Real World Appl., 10 (2009), no. 3, 1417–1423. doi: 10.1016/j.nonrwa.2008.01.013.  Google Scholar

[32]

Q. Zhang and C. Liu, Infinitely many homoclinic solutions for second order Hamiltonian systems, Nonlinear Anal., 72 (2010), no. 2,894–903. doi: 10.1016/j.na.2009.07.021.  Google Scholar

[33]

Z. Zhang and R. Yuan, Homoclinic solutions for a class of non-autonomous subquadratic second-order Hamiltonian systems, Nonlinear Anal., 71 (2009), no. 9, 4125–4130. doi: 10.1016/j.na.2009.02.071.  Google Scholar

show all references

References:
[1]

C. O. Alves, P. C. Carrião and O. H. Miyagaki, Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation, Appl. Math. Lett., 16 (2003), no. 5,639–642. doi: 10.1016/S0893-9659(03)00059-4.  Google Scholar

[2]

A. Andrzej and T. Weth, The Method of Nehari Manifold. Handbook Of Nonconvex Analysis and Applications, Int. Press, Somerville, MA, 2010,597-632.  Google Scholar

[3]

G. Arioli and A. Szulkin, Homoclinic solution for a class of systems of second order differential equations, Topol. Methods Nonlinear Anal., 6 (1995), no. 1,189–197. doi: 10.12775/TMNA.1995.040.  Google Scholar

[4]

P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal., 7 (1983), no. 9,981–1012. doi: 10.1016/0362-546X(83)90115-3.  Google Scholar

[5]

G. W. Chen, Superquadratic or asymptotically quadratic Hamiltonian systems: Ground state homoclinic orbits, Ann. Mat. Pura Appl. (4), 194 (2015), no. 3,903–918. doi: 10.1007/s10231-014-0403-9.  Google Scholar

[6]

V. Coti Zelati, I. Ekeland and E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), no. 1,133–160. doi: 10.1007/BF01444526.  Google Scholar

[7]

V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), no. 4,693–727. doi: 10.1090/S0894-0347-1991-1119200-3.  Google Scholar

[8]

Y. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear Anal., 25 (1995), no. 11, 1095–1113. doi: 10.1016/0362-546X(94)00229-B.  Google Scholar

[9]

Y. Ding and C. Lee, Homoclinics for asymptotically quadratic and superquadratic Hamiltonian systems, Nonlinear Anal., 71 (2009), no. 5-6, 1395–1413. doi: 10.1016/j.na.2008.10.116.  Google Scholar

[10]

P. L. Felmer and E. A. de B. Silva, Homoclinic and periodic orbits for Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), no. 2,285–301.  Google Scholar

[11]

P. Korman and A. C. Lazer, Homoclinic orbits for a class of symmetric Hamiltonian systems, Electron. J. Differential Equations, (1994), no. 1, 10 pp.  Google Scholar

[12] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968.   Google Scholar
[13]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), no. 2,109–145. doi: 10.1016/S0294-1449(16)30428-0.  Google Scholar

[14]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), no. 4,223–283. doi: 10.1016/S0294-1449(16)30422-X.  Google Scholar

[15]

H. F. Lins and E. A. de B. Silva, Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal., 71 (2009), no. 7-8, 2890–2905. doi: 10.1016/j.na.2009.01.171.  Google Scholar

[16]

Z. LiuS. Guo and Z. Zhang, Homoclinic orbits for the second-order Hamiltonian systems, Nonlinear Anal. Real World Appl., 36 (2017), 116-138.  doi: 10.1016/j.nonrwa.2016.12.006.  Google Scholar

[17]

X. Lv, S. Lu and P. Yan, Existence of homoclinic solutions for a class of second-order Hamiltonian systems, Nonlinear Anal., 72 (2010), no. 1,390–398. doi: 10.1016/j.na.2009.06.073.  Google Scholar

[18]

Y. Lv and C.-L. Tang, Existence of even homoclinic orbits for second-order Hamiltonian systems, Nonlinear Anal., 67 (2007), no. 7, 2189–2198. doi: 10.1016/j.na.2006.08.043.  Google Scholar

[19]

W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems, Different Integral Equations, 5 (1992), no. 5, 1115–1120.  Google Scholar

[20]

Z.-Q. Ou and C.-L. Tang, Existence of homoclinic solution for the second order Hamiltonian systems, J. Math. Anal. Appl., 291 (2004), no. 1,203–213. doi: 10.1016/j.jmaa.2003.10.026.  Google Scholar

[21]

E. Paturel, Multiple homoclinic orbits for a class of Hamiltonian systems, Calc. Var. Partial Differential Equations, 12 (2001), no. 2,117–143. doi: 10.1007/PL00009909.  Google Scholar

[22]

H. Poincaré, Les méthods nouvelles de la mécanique céleste, Gauthier-Villars, Paris, 1897–1899. Google Scholar

[23]

P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect., 114 (1990), no. 1-2, 33–38. doi: 10.1017/S0308210500024240.  Google Scholar

[24]

P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, Vol. 65, American Mathematical Society, Providence, RI, 1986. doi: 10.1090/cbms/065.  Google Scholar

[25]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), no. 2,270–291. doi: 10.1007/BF00946631.  Google Scholar

[26]

P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206 (1991), no. 3,473–499. doi: 10.1007/BF02571356.  Google Scholar

[27]

Y. Rong and Z. Zhang, Homoclinic solutions for a class of second order Hamiltonian systems, Results Math., 61 (2012), no. 1-2,195–208. doi: 10.1007/s00025-010-0088-3.  Google Scholar

[28]

E. SerraM. Tarallo and S. Terracini, Subharmonic solutions to second-order differential equations with periodic nonlinearities, Nonlinear Anal., 41 (2000), 649-667.  doi: 10.1016/S0362-546X(98)00302-2.  Google Scholar

[29]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, Vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[30]

M. Yang and Z. Han, Infinitely many homoclinic solutions for second-order Hamiltonian systems with odd nonlinearities, Nonlinear Anal., 74 (2011), no. 7, 2635–2646. doi: 10.1016/j.na.2010.12.019.  Google Scholar

[31]

J. Yang and F. Zhang, Infinitely many homoclinic orbits for the second-order Hamiltonian systems with super-quadratic potentials, Nonlinear Anal. Real World Appl., 10 (2009), no. 3, 1417–1423. doi: 10.1016/j.nonrwa.2008.01.013.  Google Scholar

[32]

Q. Zhang and C. Liu, Infinitely many homoclinic solutions for second order Hamiltonian systems, Nonlinear Anal., 72 (2010), no. 2,894–903. doi: 10.1016/j.na.2009.07.021.  Google Scholar

[33]

Z. Zhang and R. Yuan, Homoclinic solutions for a class of non-autonomous subquadratic second-order Hamiltonian systems, Nonlinear Anal., 71 (2009), no. 9, 4125–4130. doi: 10.1016/j.na.2009.02.071.  Google Scholar

[1]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[2]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[3]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[4]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[5]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[6]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[7]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[8]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[9]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[10]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[11]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[12]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[13]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[14]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[15]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[16]

Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021002

[17]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[18]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[19]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[20]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (69)
  • HTML views (236)
  • Cited by (0)

Other articles
by authors

[Back to Top]