
-
Previous Article
Finite element approximation of nonlocal dynamic fracture models
- DCDS-B Home
- This Issue
-
Next Article
Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems
Dynamic aspects of Sprott BC chaotic system
Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Avenida Trabalhador São–carlense, 400, Centro, 13.566-590, São Carlos, SP, Brazil |
$ \dot x = yz,\quad \dot y = x-y,\quad \dot z = 1-x(\alpha y+\beta x), $ |
$ (x,y,z) \in \mathbb R^3 $ |
$ \alpha, \beta \in[0,1] $ |
$ \alpha = 0 $ |
$ \mathbb R^3 $ |
References:
[1] |
D. Bleecker and G. Csordas, Basic Partial Differential Equations, International Press, Cambridge, MA, 1996.
doi: 10.1201/9781351070089.![]() ![]() ![]() |
[2] |
C. J. Christopher,
Invariant algebraic curves and conditions for a centre, Proc. Roy. Soc. Edinburgh Sect. A, 6 (1994), 1209-1229.
doi: 10.1017/s0308210500030213. |
[3] |
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer–Verlag, Berlin, 2006.
doi: 10.1007/978-3-540-32902-2. |
[4] |
Z. Elhadj and C. J. Sprott,
The unified chaotic system describing the Lorenz and Chua systems, Facta Univ., Electron. Energ., 3 (2010), 345-355.
doi: 10.2298/fuee1003345e. |
[5] |
Y. Feng and Z. Wei,
Delayed feedback control and bifurcation analysis of the generalized Sprott B system with hidden attractors, Eur. Phys. J-Spec. Top., 224 (2015), 1619-1636.
doi: 10.1140/epjst/e2015-02484-9. |
[6] |
F. R. Gantmakher, The Theory of Matrices, Vol. 1. Translated from the Russian by K. A. Hirsch. Reprint of the 1959 translation. AMS Chelsea Publishing, Providence, RI, 1998.
doi: ISBN:0-8218-1376-5. |
[7] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Second edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 1998.
doi: 10.1007/b98848. |
[8] |
J. Llibre, A. Mahdi and C. Valls,
Darboux integrability of the Lü system, J. Geom. Phys., 63 (2013), 118-128.
doi: 10.1016/j.geomphys.2012.10.003. |
[9] |
J. Llibre and C. Valls, Analytic integrability of a Chua system, J. Math. Phys., 49 (2008), 102701.
doi: 10.1063/1.2992481. |
[10] |
J. Llibre and X. Zhang,
Darboux theory of integrability for polynomial vector fields in $\mathbb{R}^n$ taking into account the multiplicity at infinity, Bull. Sci. Math., 133 (2009), 765-778.
doi: 10.1016/j.bulsci.2009.06.002. |
[11] |
J. Llibre and X. Zhang,
Darboux theory of integrability in $\mathbb{C}^n$ taking into account the multiplicity, J. Diff. Eqs., 246 (2009), 541-551.
doi: 10.1016/j.jde.2008.07.020. |
[12] |
J. Lü and G. Chen,
A new chaotic attractor coined, Int. J. Bifurcat. Chaos., 3 (2002), 659-661.
doi: 10.1142/s0218127402004620. |
[13] |
J. Lü et al.,
Bridge the gap between the Lorenz system and the Chen system, Int. J. Bifurcat. Chaos., 12 (2002), 2917-2926.
doi: 10.1142/s021812740200631x. |
[14] |
A. Mahdi and C. Valls,
Integrability of the Nosé–Hoover equation, J. Geom. Phys., 61 (2011), 1348-1352.
doi: 10.1016/j.geomphys.2011.02.018. |
[15] |
R. Oliveira and C. Valls, Chaotic behavior of a generalized Sprott E differential system, Int. J. Bifurcat. Chaos., 5 (2016), 1650083.
doi: 10.1142/s0218127416500838. |
[16] |
J. C. Sprott, Some simple chaotic flows, Phys. Rev. E., 50 (1994), R647–R650.
doi: 10.1103/physreve.50.r647. |
[17] |
Z. Wei and Q. Yang,
Dynamical analysis of the generalized Sprott C system with only two stable equilibria, Nonlinear Dyn., 4 (2012), 543-554.
doi: 10.1007/s11071-011-0235-8. |
show all references
References:
[1] |
D. Bleecker and G. Csordas, Basic Partial Differential Equations, International Press, Cambridge, MA, 1996.
doi: 10.1201/9781351070089.![]() ![]() ![]() |
[2] |
C. J. Christopher,
Invariant algebraic curves and conditions for a centre, Proc. Roy. Soc. Edinburgh Sect. A, 6 (1994), 1209-1229.
doi: 10.1017/s0308210500030213. |
[3] |
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer–Verlag, Berlin, 2006.
doi: 10.1007/978-3-540-32902-2. |
[4] |
Z. Elhadj and C. J. Sprott,
The unified chaotic system describing the Lorenz and Chua systems, Facta Univ., Electron. Energ., 3 (2010), 345-355.
doi: 10.2298/fuee1003345e. |
[5] |
Y. Feng and Z. Wei,
Delayed feedback control and bifurcation analysis of the generalized Sprott B system with hidden attractors, Eur. Phys. J-Spec. Top., 224 (2015), 1619-1636.
doi: 10.1140/epjst/e2015-02484-9. |
[6] |
F. R. Gantmakher, The Theory of Matrices, Vol. 1. Translated from the Russian by K. A. Hirsch. Reprint of the 1959 translation. AMS Chelsea Publishing, Providence, RI, 1998.
doi: ISBN:0-8218-1376-5. |
[7] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Second edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 1998.
doi: 10.1007/b98848. |
[8] |
J. Llibre, A. Mahdi and C. Valls,
Darboux integrability of the Lü system, J. Geom. Phys., 63 (2013), 118-128.
doi: 10.1016/j.geomphys.2012.10.003. |
[9] |
J. Llibre and C. Valls, Analytic integrability of a Chua system, J. Math. Phys., 49 (2008), 102701.
doi: 10.1063/1.2992481. |
[10] |
J. Llibre and X. Zhang,
Darboux theory of integrability for polynomial vector fields in $\mathbb{R}^n$ taking into account the multiplicity at infinity, Bull. Sci. Math., 133 (2009), 765-778.
doi: 10.1016/j.bulsci.2009.06.002. |
[11] |
J. Llibre and X. Zhang,
Darboux theory of integrability in $\mathbb{C}^n$ taking into account the multiplicity, J. Diff. Eqs., 246 (2009), 541-551.
doi: 10.1016/j.jde.2008.07.020. |
[12] |
J. Lü and G. Chen,
A new chaotic attractor coined, Int. J. Bifurcat. Chaos., 3 (2002), 659-661.
doi: 10.1142/s0218127402004620. |
[13] |
J. Lü et al.,
Bridge the gap between the Lorenz system and the Chen system, Int. J. Bifurcat. Chaos., 12 (2002), 2917-2926.
doi: 10.1142/s021812740200631x. |
[14] |
A. Mahdi and C. Valls,
Integrability of the Nosé–Hoover equation, J. Geom. Phys., 61 (2011), 1348-1352.
doi: 10.1016/j.geomphys.2011.02.018. |
[15] |
R. Oliveira and C. Valls, Chaotic behavior of a generalized Sprott E differential system, Int. J. Bifurcat. Chaos., 5 (2016), 1650083.
doi: 10.1142/s0218127416500838. |
[16] |
J. C. Sprott, Some simple chaotic flows, Phys. Rev. E., 50 (1994), R647–R650.
doi: 10.1103/physreve.50.r647. |
[17] |
Z. Wei and Q. Yang,
Dynamical analysis of the generalized Sprott C system with only two stable equilibria, Nonlinear Dyn., 4 (2012), 543-554.
doi: 10.1007/s11071-011-0235-8. |



[1] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[2] |
Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098 |
[3] |
Brigita Ferčec, Valery G. Romanovski, Yilei Tang, Ling Zhang. Integrability and bifurcation of a three-dimensional circuit differential system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4573-4588. doi: 10.3934/dcdsb.2021243 |
[4] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[5] |
Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507 |
[6] |
Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997 |
[7] |
Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045 |
[8] |
John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 |
[9] |
Aleksander Ćwiszewski, Wojciech Kryszewski. On a generalized Poincaré-Hopf formula in infinite dimensions. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 953-978. doi: 10.3934/dcds.2011.29.953 |
[10] |
Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979 |
[11] |
Qi An, Weihua Jiang. Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 487-510. doi: 10.3934/dcdsb.2018183 |
[12] |
Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129 |
[13] |
Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031 |
[14] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6185-6205. doi: 10.3934/dcdsb.2021013 |
[15] |
Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152 |
[16] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[17] |
B. Harbourne, P. Pokora, H. Tutaj-Gasińska. On integral Zariski decompositions of pseudoeffective divisors on algebraic surfaces. Electronic Research Announcements, 2015, 22: 103-108. doi: 10.3934/era.2015.22.103 |
[18] |
Slobodan N. Simić. Hölder forms and integrability of invariant distributions. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 669-685. doi: 10.3934/dcds.2009.25.669 |
[19] |
Patrick Foulon, Boris Hasselblatt. Lipschitz continuous invariant forms for algebraic Anosov systems. Journal of Modern Dynamics, 2010, 4 (3) : 571-584. doi: 10.3934/jmd.2010.4.571 |
[20] |
Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]