March  2021, 26(3): 1653-1673. doi: 10.3934/dcdsb.2020177

Dynamic aspects of Sprott BC chaotic system

Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Avenida Trabalhador São–carlense, 400, Centro, 13.566-590, São Carlos, SP, Brazil

* Corresponding author: regilene@icmc.usp.br

Communicated by Dongmei Xiao

Received  April 2019 Published  June 2020

Fund Project: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Níıvel Superior - Brasil (CAPES) - Finance Code 001 and FAPESP grant number 2017/20854-5

In this paper we study global dynamic aspects of the quadratic system
$ \dot x = yz,\quad \dot y = x-y,\quad \dot z = 1-x(\alpha y+\beta x), $
where
$ (x,y,z) \in \mathbb R^3 $
and
$ \alpha, \beta \in[0,1] $
are two parameters. It contains the Sprott B and the Sprott C systems at the two extremes of its parameter spectrum and we call it Sprott BC system. Here we present the complete description of its singularities and we show that this system passes through a Hopf bifurcation at
$ \alpha = 0 $
. Using the Poincaré compactification of a polynomial vector field in
$ \mathbb R^3 $
we give a complete description of its dynamic on the Poincaré sphere at infinity. We also show that such a system does not admit a polynomial first integral, nor algebraic invariant surfaces, neither Darboux first integral.
Citation: Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177
References:
[1] D. Bleecker and G. Csordas, Basic Partial Differential Equations, International Press, Cambridge, MA, 1996.  doi: 10.1201/9781351070089.  Google Scholar
[2]

C. J. Christopher, Invariant algebraic curves and conditions for a centre, Proc. Roy. Soc. Edinburgh Sect. A, 6 (1994), 1209-1229.  doi: 10.1017/s0308210500030213.  Google Scholar

[3]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer–Verlag, Berlin, 2006. doi: 10.1007/978-3-540-32902-2.  Google Scholar

[4]

Z. Elhadj and C. J. Sprott, The unified chaotic system describing the Lorenz and Chua systems, Facta Univ., Electron. Energ., 3 (2010), 345-355.  doi: 10.2298/fuee1003345e.  Google Scholar

[5]

Y. Feng and Z. Wei, Delayed feedback control and bifurcation analysis of the generalized Sprott B system with hidden attractors, Eur. Phys. J-Spec. Top., 224 (2015), 1619-1636.  doi: 10.1140/epjst/e2015-02484-9.  Google Scholar

[6]

F. R. Gantmakher, The Theory of Matrices, Vol. 1. Translated from the Russian by K. A. Hirsch. Reprint of the 1959 translation. AMS Chelsea Publishing, Providence, RI, 1998. doi: ISBN:0-8218-1376-5.  Google Scholar

[7]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Second edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 1998. doi: 10.1007/b98848.  Google Scholar

[8]

J. LlibreA. Mahdi and C. Valls, Darboux integrability of the Lü system, J. Geom. Phys., 63 (2013), 118-128.  doi: 10.1016/j.geomphys.2012.10.003.  Google Scholar

[9]

J. Llibre and C. Valls, Analytic integrability of a Chua system, J. Math. Phys., 49 (2008), 102701. doi: 10.1063/1.2992481.  Google Scholar

[10]

J. Llibre and X. Zhang, Darboux theory of integrability for polynomial vector fields in $\mathbb{R}^n$ taking into account the multiplicity at infinity, Bull. Sci. Math., 133 (2009), 765-778.  doi: 10.1016/j.bulsci.2009.06.002.  Google Scholar

[11]

J. Llibre and X. Zhang, Darboux theory of integrability in $\mathbb{C}^n$ taking into account the multiplicity, J. Diff. Eqs., 246 (2009), 541-551.  doi: 10.1016/j.jde.2008.07.020.  Google Scholar

[12]

J. Lü and G. Chen, A new chaotic attractor coined, Int. J. Bifurcat. Chaos., 3 (2002), 659-661.  doi: 10.1142/s0218127402004620.  Google Scholar

[13]

J. Lü et al., Bridge the gap between the Lorenz system and the Chen system, Int. J. Bifurcat. Chaos., 12 (2002), 2917-2926.  doi: 10.1142/s021812740200631x.  Google Scholar

[14]

A. Mahdi and C. Valls, Integrability of the Nosé–Hoover equation, J. Geom. Phys., 61 (2011), 1348-1352.  doi: 10.1016/j.geomphys.2011.02.018.  Google Scholar

[15]

R. Oliveira and C. Valls, Chaotic behavior of a generalized Sprott E differential system, Int. J. Bifurcat. Chaos., 5 (2016), 1650083. doi: 10.1142/s0218127416500838.  Google Scholar

[16]

J. C. Sprott, Some simple chaotic flows, Phys. Rev. E., 50 (1994), R647–R650. doi: 10.1103/physreve.50.r647.  Google Scholar

[17]

Z. Wei and Q. Yang, Dynamical analysis of the generalized Sprott C system with only two stable equilibria, Nonlinear Dyn., 4 (2012), 543-554.  doi: 10.1007/s11071-011-0235-8.  Google Scholar

show all references

References:
[1] D. Bleecker and G. Csordas, Basic Partial Differential Equations, International Press, Cambridge, MA, 1996.  doi: 10.1201/9781351070089.  Google Scholar
[2]

C. J. Christopher, Invariant algebraic curves and conditions for a centre, Proc. Roy. Soc. Edinburgh Sect. A, 6 (1994), 1209-1229.  doi: 10.1017/s0308210500030213.  Google Scholar

[3]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer–Verlag, Berlin, 2006. doi: 10.1007/978-3-540-32902-2.  Google Scholar

[4]

Z. Elhadj and C. J. Sprott, The unified chaotic system describing the Lorenz and Chua systems, Facta Univ., Electron. Energ., 3 (2010), 345-355.  doi: 10.2298/fuee1003345e.  Google Scholar

[5]

Y. Feng and Z. Wei, Delayed feedback control and bifurcation analysis of the generalized Sprott B system with hidden attractors, Eur. Phys. J-Spec. Top., 224 (2015), 1619-1636.  doi: 10.1140/epjst/e2015-02484-9.  Google Scholar

[6]

F. R. Gantmakher, The Theory of Matrices, Vol. 1. Translated from the Russian by K. A. Hirsch. Reprint of the 1959 translation. AMS Chelsea Publishing, Providence, RI, 1998. doi: ISBN:0-8218-1376-5.  Google Scholar

[7]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Second edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 1998. doi: 10.1007/b98848.  Google Scholar

[8]

J. LlibreA. Mahdi and C. Valls, Darboux integrability of the Lü system, J. Geom. Phys., 63 (2013), 118-128.  doi: 10.1016/j.geomphys.2012.10.003.  Google Scholar

[9]

J. Llibre and C. Valls, Analytic integrability of a Chua system, J. Math. Phys., 49 (2008), 102701. doi: 10.1063/1.2992481.  Google Scholar

[10]

J. Llibre and X. Zhang, Darboux theory of integrability for polynomial vector fields in $\mathbb{R}^n$ taking into account the multiplicity at infinity, Bull. Sci. Math., 133 (2009), 765-778.  doi: 10.1016/j.bulsci.2009.06.002.  Google Scholar

[11]

J. Llibre and X. Zhang, Darboux theory of integrability in $\mathbb{C}^n$ taking into account the multiplicity, J. Diff. Eqs., 246 (2009), 541-551.  doi: 10.1016/j.jde.2008.07.020.  Google Scholar

[12]

J. Lü and G. Chen, A new chaotic attractor coined, Int. J. Bifurcat. Chaos., 3 (2002), 659-661.  doi: 10.1142/s0218127402004620.  Google Scholar

[13]

J. Lü et al., Bridge the gap between the Lorenz system and the Chen system, Int. J. Bifurcat. Chaos., 12 (2002), 2917-2926.  doi: 10.1142/s021812740200631x.  Google Scholar

[14]

A. Mahdi and C. Valls, Integrability of the Nosé–Hoover equation, J. Geom. Phys., 61 (2011), 1348-1352.  doi: 10.1016/j.geomphys.2011.02.018.  Google Scholar

[15]

R. Oliveira and C. Valls, Chaotic behavior of a generalized Sprott E differential system, Int. J. Bifurcat. Chaos., 5 (2016), 1650083. doi: 10.1142/s0218127416500838.  Google Scholar

[16]

J. C. Sprott, Some simple chaotic flows, Phys. Rev. E., 50 (1994), R647–R650. doi: 10.1103/physreve.50.r647.  Google Scholar

[17]

Z. Wei and Q. Yang, Dynamical analysis of the generalized Sprott C system with only two stable equilibria, Nonlinear Dyn., 4 (2012), 543-554.  doi: 10.1007/s11071-011-0235-8.  Google Scholar

Figure 1.  Local behavior of orbits around the finite singularities of Sprott B (in 1(A)) and Sprott C (in 1(B)) systems
Figure 2.  Phase portrait of system (3) on the Poincaré sphere. In Figure 2(A) there exist two closed curves filled up with singularities and one pair of distinguished singularities. These distinguished singularities possess two parabolic attractor sectors and two parabolic repelling sectors. In Figure 2(B) there exist one closed curve filled up with singularities and one pair of center type singularities
Figure 3.  Phase portrait of system (3) on the Poincaré sphere. In Figure 3(A) there exist a pair of cusp type singularities and a pair of node type singularities (being one attractor and other repelling). In Figure 3(B) there exist a pair of saddles, a pair of centers and a pair of nodes (being one attractor and other repelling)
[1]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[2]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[3]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[4]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[5]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[6]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[7]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[8]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[9]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[10]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[11]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[12]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[13]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[14]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[15]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[16]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[17]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[18]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[19]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[20]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (122)
  • HTML views (270)
  • Cited by (0)

Other articles
by authors

[Back to Top]