
-
Previous Article
Finite element approximation of nonlocal dynamic fracture models
- DCDS-B Home
- This Issue
-
Next Article
Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems
Dynamic aspects of Sprott BC chaotic system
Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Avenida Trabalhador São–carlense, 400, Centro, 13.566-590, São Carlos, SP, Brazil |
$ \dot x = yz,\quad \dot y = x-y,\quad \dot z = 1-x(\alpha y+\beta x), $ |
$ (x,y,z) \in \mathbb R^3 $ |
$ \alpha, \beta \in[0,1] $ |
$ \alpha = 0 $ |
$ \mathbb R^3 $ |
References:
[1] |
D. Bleecker and G. Csordas, Basic Partial Differential Equations, International Press, Cambridge, MA, 1996.
doi: 10.1201/9781351070089.![]() ![]() |
[2] |
C. J. Christopher,
Invariant algebraic curves and conditions for a centre, Proc. Roy. Soc. Edinburgh Sect. A, 6 (1994), 1209-1229.
doi: 10.1017/s0308210500030213. |
[3] |
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer–Verlag, Berlin, 2006.
doi: 10.1007/978-3-540-32902-2. |
[4] |
Z. Elhadj and C. J. Sprott,
The unified chaotic system describing the Lorenz and Chua systems, Facta Univ., Electron. Energ., 3 (2010), 345-355.
doi: 10.2298/fuee1003345e. |
[5] |
Y. Feng and Z. Wei,
Delayed feedback control and bifurcation analysis of the generalized Sprott B system with hidden attractors, Eur. Phys. J-Spec. Top., 224 (2015), 1619-1636.
doi: 10.1140/epjst/e2015-02484-9. |
[6] |
F. R. Gantmakher, The Theory of Matrices, Vol. 1. Translated from the Russian by K. A. Hirsch. Reprint of the 1959 translation. AMS Chelsea Publishing, Providence, RI, 1998.
doi: ISBN:0-8218-1376-5. |
[7] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Second edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 1998.
doi: 10.1007/b98848. |
[8] |
J. Llibre, A. Mahdi and C. Valls,
Darboux integrability of the Lü system, J. Geom. Phys., 63 (2013), 118-128.
doi: 10.1016/j.geomphys.2012.10.003. |
[9] |
J. Llibre and C. Valls, Analytic integrability of a Chua system, J. Math. Phys., 49 (2008), 102701.
doi: 10.1063/1.2992481. |
[10] |
J. Llibre and X. Zhang,
Darboux theory of integrability for polynomial vector fields in $\mathbb{R}^n$ taking into account the multiplicity at infinity, Bull. Sci. Math., 133 (2009), 765-778.
doi: 10.1016/j.bulsci.2009.06.002. |
[11] |
J. Llibre and X. Zhang,
Darboux theory of integrability in $\mathbb{C}^n$ taking into account the multiplicity, J. Diff. Eqs., 246 (2009), 541-551.
doi: 10.1016/j.jde.2008.07.020. |
[12] |
J. Lü and G. Chen,
A new chaotic attractor coined, Int. J. Bifurcat. Chaos., 3 (2002), 659-661.
doi: 10.1142/s0218127402004620. |
[13] |
J. Lü et al.,
Bridge the gap between the Lorenz system and the Chen system, Int. J. Bifurcat. Chaos., 12 (2002), 2917-2926.
doi: 10.1142/s021812740200631x. |
[14] |
A. Mahdi and C. Valls,
Integrability of the Nosé–Hoover equation, J. Geom. Phys., 61 (2011), 1348-1352.
doi: 10.1016/j.geomphys.2011.02.018. |
[15] |
R. Oliveira and C. Valls, Chaotic behavior of a generalized Sprott E differential system, Int. J. Bifurcat. Chaos., 5 (2016), 1650083.
doi: 10.1142/s0218127416500838. |
[16] |
J. C. Sprott, Some simple chaotic flows, Phys. Rev. E., 50 (1994), R647–R650.
doi: 10.1103/physreve.50.r647. |
[17] |
Z. Wei and Q. Yang,
Dynamical analysis of the generalized Sprott C system with only two stable equilibria, Nonlinear Dyn., 4 (2012), 543-554.
doi: 10.1007/s11071-011-0235-8. |
show all references
References:
[1] |
D. Bleecker and G. Csordas, Basic Partial Differential Equations, International Press, Cambridge, MA, 1996.
doi: 10.1201/9781351070089.![]() ![]() |
[2] |
C. J. Christopher,
Invariant algebraic curves and conditions for a centre, Proc. Roy. Soc. Edinburgh Sect. A, 6 (1994), 1209-1229.
doi: 10.1017/s0308210500030213. |
[3] |
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer–Verlag, Berlin, 2006.
doi: 10.1007/978-3-540-32902-2. |
[4] |
Z. Elhadj and C. J. Sprott,
The unified chaotic system describing the Lorenz and Chua systems, Facta Univ., Electron. Energ., 3 (2010), 345-355.
doi: 10.2298/fuee1003345e. |
[5] |
Y. Feng and Z. Wei,
Delayed feedback control and bifurcation analysis of the generalized Sprott B system with hidden attractors, Eur. Phys. J-Spec. Top., 224 (2015), 1619-1636.
doi: 10.1140/epjst/e2015-02484-9. |
[6] |
F. R. Gantmakher, The Theory of Matrices, Vol. 1. Translated from the Russian by K. A. Hirsch. Reprint of the 1959 translation. AMS Chelsea Publishing, Providence, RI, 1998.
doi: ISBN:0-8218-1376-5. |
[7] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Second edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 1998.
doi: 10.1007/b98848. |
[8] |
J. Llibre, A. Mahdi and C. Valls,
Darboux integrability of the Lü system, J. Geom. Phys., 63 (2013), 118-128.
doi: 10.1016/j.geomphys.2012.10.003. |
[9] |
J. Llibre and C. Valls, Analytic integrability of a Chua system, J. Math. Phys., 49 (2008), 102701.
doi: 10.1063/1.2992481. |
[10] |
J. Llibre and X. Zhang,
Darboux theory of integrability for polynomial vector fields in $\mathbb{R}^n$ taking into account the multiplicity at infinity, Bull. Sci. Math., 133 (2009), 765-778.
doi: 10.1016/j.bulsci.2009.06.002. |
[11] |
J. Llibre and X. Zhang,
Darboux theory of integrability in $\mathbb{C}^n$ taking into account the multiplicity, J. Diff. Eqs., 246 (2009), 541-551.
doi: 10.1016/j.jde.2008.07.020. |
[12] |
J. Lü and G. Chen,
A new chaotic attractor coined, Int. J. Bifurcat. Chaos., 3 (2002), 659-661.
doi: 10.1142/s0218127402004620. |
[13] |
J. Lü et al.,
Bridge the gap between the Lorenz system and the Chen system, Int. J. Bifurcat. Chaos., 12 (2002), 2917-2926.
doi: 10.1142/s021812740200631x. |
[14] |
A. Mahdi and C. Valls,
Integrability of the Nosé–Hoover equation, J. Geom. Phys., 61 (2011), 1348-1352.
doi: 10.1016/j.geomphys.2011.02.018. |
[15] |
R. Oliveira and C. Valls, Chaotic behavior of a generalized Sprott E differential system, Int. J. Bifurcat. Chaos., 5 (2016), 1650083.
doi: 10.1142/s0218127416500838. |
[16] |
J. C. Sprott, Some simple chaotic flows, Phys. Rev. E., 50 (1994), R647–R650.
doi: 10.1103/physreve.50.r647. |
[17] |
Z. Wei and Q. Yang,
Dynamical analysis of the generalized Sprott C system with only two stable equilibria, Nonlinear Dyn., 4 (2012), 543-554.
doi: 10.1007/s11071-011-0235-8. |



[1] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[2] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[3] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[4] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[5] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[6] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[7] |
Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182 |
[8] |
Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025 |
[9] |
Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027 |
[10] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[11] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[12] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[13] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[14] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[15] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[16] |
Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021008 |
[17] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[18] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[19] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[20] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]