• Previous Article
    Free boundary problems with nonlocal and local diffusions Ⅱ: Spreading-vanishing and long-time behavior
  • DCDS-B Home
  • This Issue
  • Next Article
    Global phase portraits and bifurcation diagrams for reversible equivariant hamiltonian systems of linear plus quartic homogeneous polynomials
doi: 10.3934/dcdsb.2020177

Dynamic aspects of Sprott BC chaotic system

Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Avenida Trabalhador São–carlense, 400, Centro, 13.566-590, São Carlos, SP, Brazil

* Corresponding author: regilene@icmc.usp.br

Communicated by Dongmei Xiao

Received  April 2019 Published  June 2020

Fund Project: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Níıvel Superior - Brasil (CAPES) - Finance Code 001 and FAPESP grant number 2017/20854-5

In this paper we study global dynamic aspects of the quadratic system
$ \dot x = yz,\quad \dot y = x-y,\quad \dot z = 1-x(\alpha y+\beta x), $
where
$ (x,y,z) \in \mathbb R^3 $
and
$ \alpha, \beta \in[0,1] $
are two parameters. It contains the Sprott B and the Sprott C systems at the two extremes of its parameter spectrum and we call it Sprott BC system. Here we present the complete description of its singularities and we show that this system passes through a Hopf bifurcation at
$ \alpha = 0 $
. Using the Poincaré compactification of a polynomial vector field in
$ \mathbb R^3 $
we give a complete description of its dynamic on the Poincaré sphere at infinity. We also show that such a system does not admit a polynomial first integral, nor algebraic invariant surfaces, neither Darboux first integral.
Citation: Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020177
References:
[1] D. Bleecker and G. Csordas, Basic Partial Differential Equations, International Press, Cambridge, MA, 1996.  doi: 10.1201/9781351070089.  Google Scholar
[2]

C. J. Christopher, Invariant algebraic curves and conditions for a centre, Proc. Roy. Soc. Edinburgh Sect. A, 6 (1994), 1209-1229.  doi: 10.1017/s0308210500030213.  Google Scholar

[3]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer–Verlag, Berlin, 2006. doi: 10.1007/978-3-540-32902-2.  Google Scholar

[4]

Z. Elhadj and C. J. Sprott, The unified chaotic system describing the Lorenz and Chua systems, Facta Univ., Electron. Energ., 3 (2010), 345-355.  doi: 10.2298/fuee1003345e.  Google Scholar

[5]

Y. Feng and Z. Wei, Delayed feedback control and bifurcation analysis of the generalized Sprott B system with hidden attractors, Eur. Phys. J-Spec. Top., 224 (2015), 1619-1636.  doi: 10.1140/epjst/e2015-02484-9.  Google Scholar

[6]

F. R. Gantmakher, The Theory of Matrices, Vol. 1. Translated from the Russian by K. A. Hirsch. Reprint of the 1959 translation. AMS Chelsea Publishing, Providence, RI, 1998. doi: ISBN:0-8218-1376-5.  Google Scholar

[7]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Second edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 1998. doi: 10.1007/b98848.  Google Scholar

[8]

J. LlibreA. Mahdi and C. Valls, Darboux integrability of the Lü system, J. Geom. Phys., 63 (2013), 118-128.  doi: 10.1016/j.geomphys.2012.10.003.  Google Scholar

[9]

J. Llibre and C. Valls, Analytic integrability of a Chua system, J. Math. Phys., 49 (2008), 102701. doi: 10.1063/1.2992481.  Google Scholar

[10]

J. Llibre and X. Zhang, Darboux theory of integrability for polynomial vector fields in $\mathbb{R}^n$ taking into account the multiplicity at infinity, Bull. Sci. Math., 133 (2009), 765-778.  doi: 10.1016/j.bulsci.2009.06.002.  Google Scholar

[11]

J. Llibre and X. Zhang, Darboux theory of integrability in $\mathbb{C}^n$ taking into account the multiplicity, J. Diff. Eqs., 246 (2009), 541-551.  doi: 10.1016/j.jde.2008.07.020.  Google Scholar

[12]

J. Lü and G. Chen, A new chaotic attractor coined, Int. J. Bifurcat. Chaos., 3 (2002), 659-661.  doi: 10.1142/s0218127402004620.  Google Scholar

[13]

J. Lü et al., Bridge the gap between the Lorenz system and the Chen system, Int. J. Bifurcat. Chaos., 12 (2002), 2917-2926.  doi: 10.1142/s021812740200631x.  Google Scholar

[14]

A. Mahdi and C. Valls, Integrability of the Nosé–Hoover equation, J. Geom. Phys., 61 (2011), 1348-1352.  doi: 10.1016/j.geomphys.2011.02.018.  Google Scholar

[15]

R. Oliveira and C. Valls, Chaotic behavior of a generalized Sprott E differential system, Int. J. Bifurcat. Chaos., 5 (2016), 1650083. doi: 10.1142/s0218127416500838.  Google Scholar

[16]

J. C. Sprott, Some simple chaotic flows, Phys. Rev. E., 50 (1994), R647–R650. doi: 10.1103/physreve.50.r647.  Google Scholar

[17]

Z. Wei and Q. Yang, Dynamical analysis of the generalized Sprott C system with only two stable equilibria, Nonlinear Dyn., 4 (2012), 543-554.  doi: 10.1007/s11071-011-0235-8.  Google Scholar

show all references

References:
[1] D. Bleecker and G. Csordas, Basic Partial Differential Equations, International Press, Cambridge, MA, 1996.  doi: 10.1201/9781351070089.  Google Scholar
[2]

C. J. Christopher, Invariant algebraic curves and conditions for a centre, Proc. Roy. Soc. Edinburgh Sect. A, 6 (1994), 1209-1229.  doi: 10.1017/s0308210500030213.  Google Scholar

[3]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer–Verlag, Berlin, 2006. doi: 10.1007/978-3-540-32902-2.  Google Scholar

[4]

Z. Elhadj and C. J. Sprott, The unified chaotic system describing the Lorenz and Chua systems, Facta Univ., Electron. Energ., 3 (2010), 345-355.  doi: 10.2298/fuee1003345e.  Google Scholar

[5]

Y. Feng and Z. Wei, Delayed feedback control and bifurcation analysis of the generalized Sprott B system with hidden attractors, Eur. Phys. J-Spec. Top., 224 (2015), 1619-1636.  doi: 10.1140/epjst/e2015-02484-9.  Google Scholar

[6]

F. R. Gantmakher, The Theory of Matrices, Vol. 1. Translated from the Russian by K. A. Hirsch. Reprint of the 1959 translation. AMS Chelsea Publishing, Providence, RI, 1998. doi: ISBN:0-8218-1376-5.  Google Scholar

[7]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Second edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 1998. doi: 10.1007/b98848.  Google Scholar

[8]

J. LlibreA. Mahdi and C. Valls, Darboux integrability of the Lü system, J. Geom. Phys., 63 (2013), 118-128.  doi: 10.1016/j.geomphys.2012.10.003.  Google Scholar

[9]

J. Llibre and C. Valls, Analytic integrability of a Chua system, J. Math. Phys., 49 (2008), 102701. doi: 10.1063/1.2992481.  Google Scholar

[10]

J. Llibre and X. Zhang, Darboux theory of integrability for polynomial vector fields in $\mathbb{R}^n$ taking into account the multiplicity at infinity, Bull. Sci. Math., 133 (2009), 765-778.  doi: 10.1016/j.bulsci.2009.06.002.  Google Scholar

[11]

J. Llibre and X. Zhang, Darboux theory of integrability in $\mathbb{C}^n$ taking into account the multiplicity, J. Diff. Eqs., 246 (2009), 541-551.  doi: 10.1016/j.jde.2008.07.020.  Google Scholar

[12]

J. Lü and G. Chen, A new chaotic attractor coined, Int. J. Bifurcat. Chaos., 3 (2002), 659-661.  doi: 10.1142/s0218127402004620.  Google Scholar

[13]

J. Lü et al., Bridge the gap between the Lorenz system and the Chen system, Int. J. Bifurcat. Chaos., 12 (2002), 2917-2926.  doi: 10.1142/s021812740200631x.  Google Scholar

[14]

A. Mahdi and C. Valls, Integrability of the Nosé–Hoover equation, J. Geom. Phys., 61 (2011), 1348-1352.  doi: 10.1016/j.geomphys.2011.02.018.  Google Scholar

[15]

R. Oliveira and C. Valls, Chaotic behavior of a generalized Sprott E differential system, Int. J. Bifurcat. Chaos., 5 (2016), 1650083. doi: 10.1142/s0218127416500838.  Google Scholar

[16]

J. C. Sprott, Some simple chaotic flows, Phys. Rev. E., 50 (1994), R647–R650. doi: 10.1103/physreve.50.r647.  Google Scholar

[17]

Z. Wei and Q. Yang, Dynamical analysis of the generalized Sprott C system with only two stable equilibria, Nonlinear Dyn., 4 (2012), 543-554.  doi: 10.1007/s11071-011-0235-8.  Google Scholar

Figure 1.  Local behavior of orbits around the finite singularities of Sprott B (in 1(A)) and Sprott C (in 1(B)) systems
Figure 2.  Phase portrait of system (3) on the Poincaré sphere. In Figure 2(A) there exist two closed curves filled up with singularities and one pair of distinguished singularities. These distinguished singularities possess two parabolic attractor sectors and two parabolic repelling sectors. In Figure 2(B) there exist one closed curve filled up with singularities and one pair of center type singularities
Figure 3.  Phase portrait of system (3) on the Poincaré sphere. In Figure 3(A) there exist a pair of cusp type singularities and a pair of node type singularities (being one attractor and other repelling). In Figure 3(B) there exist a pair of saddles, a pair of centers and a pair of nodes (being one attractor and other repelling)
[1]

Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098

[2]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020173

[3]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[4]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[5]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[6]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[7]

Aleksander Ćwiszewski, Wojciech Kryszewski. On a generalized Poincaré-Hopf formula in infinite dimensions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 953-978. doi: 10.3934/dcds.2011.29.953

[8]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[9]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[10]

Qi An, Weihua Jiang. Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 487-510. doi: 10.3934/dcdsb.2018183

[11]

Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete & Continuous Dynamical Systems - S, 2019  doi: 10.3934/dcdss.2020129

[12]

B. Harbourne, P. Pokora, H. Tutaj-Gasińska. On integral Zariski decompositions of pseudoeffective divisors on algebraic surfaces. Electronic Research Announcements, 2015, 22: 103-108. doi: 10.3934/era.2015.22.103

[13]

Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152

[14]

Qigang Yuan, Jingli Ren. Periodic forcing on Degenerate Hopf Bifurcation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020208

[15]

Slobodan N. Simić. Hölder forms and integrability of invariant distributions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 669-685. doi: 10.3934/dcds.2009.25.669

[16]

Patrick Foulon, Boris Hasselblatt. Lipschitz continuous invariant forms for algebraic Anosov systems. Journal of Modern Dynamics, 2010, 4 (3) : 571-584. doi: 10.3934/jmd.2010.4.571

[17]

Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71

[18]

R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure & Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147

[19]

Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197

[20]

Begoña Alarcón, Víctor Guíñez, Carlos Gutierrez. Hopf bifurcation at infinity for planar vector fields. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 247-258. doi: 10.3934/dcds.2007.17.247

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]