March  2021, 26(3): 1675-1710. doi: 10.3934/dcdsb.2020178

Finite element approximation of nonlocal dynamic fracture models

1. 

Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA

2. 

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA

* Corresponding author: P. K. Jha

Received  May 2019 Revised  January 2020 Published  June 2020

Fund Project: This material is based upon work supported by the U. S. Army Research Laboratory and the U. S. Army Research Office under contract/grant number W911NF1610456

In this work we estimate the convergence rate for time stepping schemes applied to nonlocal dynamic fracture modeling. Here we use the nonlocal formulation given by the bond based peridynamic equation of motion. We begin by establishing the existence of $ H^2 $ peridynamic solutions over any finite time interval. For this model the gradients can become large and steep slopes appear and localize when the non-locality of the model tends to zero. In this treatment spatial approximation by finite elements are used. We consider the central-difference scheme for time discretization and linear finite elements for discretization in the spatial variable. The fully discrete scheme is shown to converge to the actual $ H^2 $ solution in the mean square norm at the rate $ C_t\Delta t +C_s h^2/\epsilon^2 $. Here $ h $ is the mesh size, $ \epsilon $ is the length scale of nonlocal interaction and $ \Delta t $ is the time step. The constants $ C_t $ and $ C_s $ are independent of $ \Delta t $, and $ h $. In the absence of nonlinearity a CFL like condition for the energy stability of the central difference time discretization scheme is developed. As an example we consider Plexiglass and compute constants in the a-priori error bound.

Citation: P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178
References:
[1]

A. AgwaiI. Guven and E. Madenci, Predicting crack propagation with peridynamics: A comparative study, International Journal of Fracture, 171 (2011), 65-78.  doi: 10.1007/s10704-011-9628-4.  Google Scholar

[2]

B. Aksoylu and Z. Unlu, Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces, SIAM Journal on Numerical Analysis, 52 (2014), 653-677.  doi: 10.1137/13092407X.  Google Scholar

[3]

B. Aksoylu and M. L. Parks, Variational theory and domain decomposition for nonlocal problems, Applied Mathematics and Computation, 217 (2011), 6498-6515.  doi: 10.1016/j.amc.2011.01.027.  Google Scholar

[4]

G. A. Baker, Error estimates for finite element methods for second order hyperbolic equations, SIAM Journal on Numerical Analysis, 13 (1976), 564-576.  doi: 10.1137/0713048.  Google Scholar

[5]

F. Bobaru and W. Hu, The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials, International Journal of Fracture, 176 (2012), 215-222.  doi: 10.1007/s10704-012-9725-z.  Google Scholar

[6]

S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, 3$^rd$ edition, Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[7]

H. Brezis, Analyse fonctionnelle, Théorie et applications, in Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.  Google Scholar

[8]

Z. ChenD. Bakenhus and F. Bobaru, A constructive peridynamic kernel for elasticity, Computer Methods in Applied Mechanics and Engineering, 311 (2016), 356-373.  doi: 10.1016/j.cma.2016.08.012.  Google Scholar

[9]

K. Dayal, Leading-order nonlocal kinetic energy in peridynamics for consistent energetics and wave dispersion, Journal of the Mechanics and Physics of Solids, 105 (2017), 235-253.  doi: 10.1016/j.jmps.2017.05.002.  Google Scholar

[10]

K. Dayal and K. Bhattacharya, Kinetics of phase transformations in the peridynamic formulation of continuum mechanics, Journal of the Mechanics and Physics of Solids, 54 (2006), 1811-1842.  doi: 10.1016/j.jmps.2006.04.001.  Google Scholar

[11]

P. Diehl, R. Lipton and M. Schweitzer, Numerical verification of a bond-based softening peridynamic model for small displacements: Deducing material parameters from classical linear theory., preprint, Institut für Numerische Simulation, (2016). Google Scholar

[12]

Q. DuL. Tian and X. Zhao, A convergent adaptive finite element algorithm for nonlocal diffusion and peridynamic models, SIAM Journal on Numerical Analysis, 51 (2013), 1211-1234.  doi: 10.1137/120871638.  Google Scholar

[13]

Q. Du and K. Zhou, Mathematical analysis for the peridynamic nonlocal continuum theory, ESAIM: Mathematical Modelling and Numerical Analysis, 45 (2011), 217-234.  doi: 10.1051/m2an/2010040.  Google Scholar

[14]

E. Emmrich, R. B. Lehoucq and D. Puhst, Peridynamics: A nonlocal continuum theory, in Meshfree Methods for Partial Differential Equations VI, Springer, Heidelberg, 2013, 45–65. doi: 10.1007/978-3-642-32979-1_3.  Google Scholar

[15]

J. T. FosterS. A. Silling and W. Chen, An energy based failure criterion for use with peridynamic states, International Journal for Multiscale Computational Engineering, 9 (2011), 675-688.  doi: 10.1615/IntJMultCompEng.2011002407.  Google Scholar

[16]

F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Springer, London, 2012. doi: 10.1007/978-1-4471-2807-6.  Google Scholar

[17]

W. GerstleN. Sau and S. Silling, Peridynamic modeling of concrete structures, Nuclear Engineering and Design, 237 (2007), 1250-1258.  doi: 10.1016/j.nucengdes.2006.10.002.  Google Scholar

[18]

M. GhajariL. Iannucci and P. Curtis, A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media, Computer Methods in Applied Mechanics and Engineering, 276 (2014), 431-452.  doi: 10.1016/j.cma.2014.04.002.  Google Scholar

[19]

M. J. Grote and D. Schötzau, Optimal error estimates for the fully discrete interior penalty DG method for the wave equation, Journal of Scientific Computing, 40 (2009), 257-272.  doi: 10.1007/s10915-008-9247-z.  Google Scholar

[20]

Q. Guan and M. Gunzburger, Stability and accuracy of time-stepping schemes and dispersion relations for a nonlocal wave equation, Numerical Methods for Partial Differential Equations, 31 (2015), 500-516.  doi: 10.1002/num.21931.  Google Scholar

[21]

Y. D. Ha and F. Bobaru, Studies of dynamic crack propagation and crack branching with peridynamics, International Journal of Fracture, 162 (2010), 229-244.  doi: 10.1007/s10704-010-9442-4.  Google Scholar

[22]

D. HuangG. Lu and P. Qiao, An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis, International Journal of Mechanical Sciences, 94 (2015), 111-122.  doi: 10.1016/j.ijmecsci.2015.02.018.  Google Scholar

[23]

P. K. Jha and R. Lipton, Numerical analysis of nonlocal fracture models in Hölder space, SIAM Journal on Numerical Analysis, 56 (2018), 906-941.  doi: 10.1137/17M1112236.  Google Scholar

[24]

P. K. Jha and R. Lipton, Numerical convergence of nonlinear nonlocal continuum models to local elastodynamics, International Journal for Numerical Methods in Engineering, 114 (2018), 1389-1410.  doi: 10.1002/nme.5791.  Google Scholar

[25]

S. Karaa, Stability and convergence of fully discrete finite element schemes for the acoustic wave equation, Journal of Applied Mathematics and Computing, 40 (2012), 659-682.  doi: 10.1007/s12190-012-0558-8.  Google Scholar

[26]

Q. V. LeW. K. Chan and J. Schwartz, A two-dimensional ordinary, state-based peridynamic model for linearly elastic solids, International Journal for Numerical Methods in Engineering, 98 (2014), 547-567.  doi: 10.1002/nme.4642.  Google Scholar

[27]

R. Lipton, Dynamic brittle fracture as a small horizon limit of peridynamics, Journal of Elasticity, 117 (2014), 21-50.  doi: 10.1007/s10659-013-9463-0.  Google Scholar

[28]

R. Lipton, Cohesive dynamics and brittle fracture, Journal of Elasticity, 124 (2016), 143-191.  doi: 10.1007/s10659-015-9564-z.  Google Scholar

[29]

R. Lipton, E. Said and P. K. Jha, Dynamic brittle fracture from nonlocal double-well potentials: A state-based model, in Handbook of Nonlocal Continuum Mechanics for Materials and Structures, Springer, Cham, 2018, 1–27. doi: 10.1007/978-3-319-22977-5_33-1.  Google Scholar

[30]

R. LiptonS. Silling and R. Lehoucq, Complex fracture nucleation and evolution with nonlocal elastodynamics, Journal of Peridynamics and Nonlocal Modeling, 1 (2019), 122-130.  doi: 10.1007/s42102-019-00010-0.  Google Scholar

[31]

D. J. Littlewood, Simulation of dynamic fracture using peridynamics, finite element modeling, and contact, in Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition (IMECE), Vol. 9, Vancouver, British Columbia, Canada, 2010,209–217. doi: 10.1115/IMECE2010-40621.  Google Scholar

[32]

R. W. Macek and S. A. Silling, Peridynamics via finite element analysis, Finite Elements in Analysis and Design, 43 (2007), 1169-1178.  doi: 10.1016/j.finel.2007.08.012.  Google Scholar

[33]

T. Mengesha and Q. Du, Analysis of a scalar peridynamic model with a sign changing kernel, Discrete Contin. Dynam. Systems B, 18 (2013), 1415-1437.  doi: 10.3934/dcdsb.2013.18.1415.  Google Scholar

[34]

T. Mengesha and Q. Du, On the variational limit of a class of nonlocal functionals related to peridynamics, Nonlinearity, 28 (2015), 3999-4035.  doi: 10.1088/0951-7715/28/11/3999.  Google Scholar

[35]

J. O'Grady and J. Foster, Peridynamic plates and flat shells: A non-ordinary, state-based model, International Journal of Solids and Structures, 51 (2014), 4572-4579.  doi: 10.1016/j.ijsolstr.2014.09.003.  Google Scholar

[36]

S. SillingO. WecknerE. Askari and F. Bobaru, Crack nucleation in a peridynamic solid, International Journal of Fracture, 162 (2010), 219-227.  doi: 10.1007/s10704-010-9447-z.  Google Scholar

[37]

S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, 48 (2000), 175-209.  doi: 10.1016/S0022-5096(99)00029-0.  Google Scholar

[38]

S. A. Silling and R. B. Lehoucq, Convergence of peridynamics to classical elasticity theory, Journal of Elasticity, 93 (2008), 13-37.  doi: 10.1007/s10659-008-9163-3.  Google Scholar

[39]

M. Taylor and D. J. Steigmann, A two-dimensional peridynamic model for thin plates, Mathematics and Mechanics of Solids, 20 (2015), 998-1010.  doi: 10.1177/1081286513512925.  Google Scholar

[40]

X. Tian and Q. Du, Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM Journal on Numerical Analysis, 52 (2014), 1641-1665.  doi: 10.1137/130942644.  Google Scholar

show all references

References:
[1]

A. AgwaiI. Guven and E. Madenci, Predicting crack propagation with peridynamics: A comparative study, International Journal of Fracture, 171 (2011), 65-78.  doi: 10.1007/s10704-011-9628-4.  Google Scholar

[2]

B. Aksoylu and Z. Unlu, Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces, SIAM Journal on Numerical Analysis, 52 (2014), 653-677.  doi: 10.1137/13092407X.  Google Scholar

[3]

B. Aksoylu and M. L. Parks, Variational theory and domain decomposition for nonlocal problems, Applied Mathematics and Computation, 217 (2011), 6498-6515.  doi: 10.1016/j.amc.2011.01.027.  Google Scholar

[4]

G. A. Baker, Error estimates for finite element methods for second order hyperbolic equations, SIAM Journal on Numerical Analysis, 13 (1976), 564-576.  doi: 10.1137/0713048.  Google Scholar

[5]

F. Bobaru and W. Hu, The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials, International Journal of Fracture, 176 (2012), 215-222.  doi: 10.1007/s10704-012-9725-z.  Google Scholar

[6]

S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, 3$^rd$ edition, Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[7]

H. Brezis, Analyse fonctionnelle, Théorie et applications, in Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.  Google Scholar

[8]

Z. ChenD. Bakenhus and F. Bobaru, A constructive peridynamic kernel for elasticity, Computer Methods in Applied Mechanics and Engineering, 311 (2016), 356-373.  doi: 10.1016/j.cma.2016.08.012.  Google Scholar

[9]

K. Dayal, Leading-order nonlocal kinetic energy in peridynamics for consistent energetics and wave dispersion, Journal of the Mechanics and Physics of Solids, 105 (2017), 235-253.  doi: 10.1016/j.jmps.2017.05.002.  Google Scholar

[10]

K. Dayal and K. Bhattacharya, Kinetics of phase transformations in the peridynamic formulation of continuum mechanics, Journal of the Mechanics and Physics of Solids, 54 (2006), 1811-1842.  doi: 10.1016/j.jmps.2006.04.001.  Google Scholar

[11]

P. Diehl, R. Lipton and M. Schweitzer, Numerical verification of a bond-based softening peridynamic model for small displacements: Deducing material parameters from classical linear theory., preprint, Institut für Numerische Simulation, (2016). Google Scholar

[12]

Q. DuL. Tian and X. Zhao, A convergent adaptive finite element algorithm for nonlocal diffusion and peridynamic models, SIAM Journal on Numerical Analysis, 51 (2013), 1211-1234.  doi: 10.1137/120871638.  Google Scholar

[13]

Q. Du and K. Zhou, Mathematical analysis for the peridynamic nonlocal continuum theory, ESAIM: Mathematical Modelling and Numerical Analysis, 45 (2011), 217-234.  doi: 10.1051/m2an/2010040.  Google Scholar

[14]

E. Emmrich, R. B. Lehoucq and D. Puhst, Peridynamics: A nonlocal continuum theory, in Meshfree Methods for Partial Differential Equations VI, Springer, Heidelberg, 2013, 45–65. doi: 10.1007/978-3-642-32979-1_3.  Google Scholar

[15]

J. T. FosterS. A. Silling and W. Chen, An energy based failure criterion for use with peridynamic states, International Journal for Multiscale Computational Engineering, 9 (2011), 675-688.  doi: 10.1615/IntJMultCompEng.2011002407.  Google Scholar

[16]

F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Springer, London, 2012. doi: 10.1007/978-1-4471-2807-6.  Google Scholar

[17]

W. GerstleN. Sau and S. Silling, Peridynamic modeling of concrete structures, Nuclear Engineering and Design, 237 (2007), 1250-1258.  doi: 10.1016/j.nucengdes.2006.10.002.  Google Scholar

[18]

M. GhajariL. Iannucci and P. Curtis, A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media, Computer Methods in Applied Mechanics and Engineering, 276 (2014), 431-452.  doi: 10.1016/j.cma.2014.04.002.  Google Scholar

[19]

M. J. Grote and D. Schötzau, Optimal error estimates for the fully discrete interior penalty DG method for the wave equation, Journal of Scientific Computing, 40 (2009), 257-272.  doi: 10.1007/s10915-008-9247-z.  Google Scholar

[20]

Q. Guan and M. Gunzburger, Stability and accuracy of time-stepping schemes and dispersion relations for a nonlocal wave equation, Numerical Methods for Partial Differential Equations, 31 (2015), 500-516.  doi: 10.1002/num.21931.  Google Scholar

[21]

Y. D. Ha and F. Bobaru, Studies of dynamic crack propagation and crack branching with peridynamics, International Journal of Fracture, 162 (2010), 229-244.  doi: 10.1007/s10704-010-9442-4.  Google Scholar

[22]

D. HuangG. Lu and P. Qiao, An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis, International Journal of Mechanical Sciences, 94 (2015), 111-122.  doi: 10.1016/j.ijmecsci.2015.02.018.  Google Scholar

[23]

P. K. Jha and R. Lipton, Numerical analysis of nonlocal fracture models in Hölder space, SIAM Journal on Numerical Analysis, 56 (2018), 906-941.  doi: 10.1137/17M1112236.  Google Scholar

[24]

P. K. Jha and R. Lipton, Numerical convergence of nonlinear nonlocal continuum models to local elastodynamics, International Journal for Numerical Methods in Engineering, 114 (2018), 1389-1410.  doi: 10.1002/nme.5791.  Google Scholar

[25]

S. Karaa, Stability and convergence of fully discrete finite element schemes for the acoustic wave equation, Journal of Applied Mathematics and Computing, 40 (2012), 659-682.  doi: 10.1007/s12190-012-0558-8.  Google Scholar

[26]

Q. V. LeW. K. Chan and J. Schwartz, A two-dimensional ordinary, state-based peridynamic model for linearly elastic solids, International Journal for Numerical Methods in Engineering, 98 (2014), 547-567.  doi: 10.1002/nme.4642.  Google Scholar

[27]

R. Lipton, Dynamic brittle fracture as a small horizon limit of peridynamics, Journal of Elasticity, 117 (2014), 21-50.  doi: 10.1007/s10659-013-9463-0.  Google Scholar

[28]

R. Lipton, Cohesive dynamics and brittle fracture, Journal of Elasticity, 124 (2016), 143-191.  doi: 10.1007/s10659-015-9564-z.  Google Scholar

[29]

R. Lipton, E. Said and P. K. Jha, Dynamic brittle fracture from nonlocal double-well potentials: A state-based model, in Handbook of Nonlocal Continuum Mechanics for Materials and Structures, Springer, Cham, 2018, 1–27. doi: 10.1007/978-3-319-22977-5_33-1.  Google Scholar

[30]

R. LiptonS. Silling and R. Lehoucq, Complex fracture nucleation and evolution with nonlocal elastodynamics, Journal of Peridynamics and Nonlocal Modeling, 1 (2019), 122-130.  doi: 10.1007/s42102-019-00010-0.  Google Scholar

[31]

D. J. Littlewood, Simulation of dynamic fracture using peridynamics, finite element modeling, and contact, in Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition (IMECE), Vol. 9, Vancouver, British Columbia, Canada, 2010,209–217. doi: 10.1115/IMECE2010-40621.  Google Scholar

[32]

R. W. Macek and S. A. Silling, Peridynamics via finite element analysis, Finite Elements in Analysis and Design, 43 (2007), 1169-1178.  doi: 10.1016/j.finel.2007.08.012.  Google Scholar

[33]

T. Mengesha and Q. Du, Analysis of a scalar peridynamic model with a sign changing kernel, Discrete Contin. Dynam. Systems B, 18 (2013), 1415-1437.  doi: 10.3934/dcdsb.2013.18.1415.  Google Scholar

[34]

T. Mengesha and Q. Du, On the variational limit of a class of nonlocal functionals related to peridynamics, Nonlinearity, 28 (2015), 3999-4035.  doi: 10.1088/0951-7715/28/11/3999.  Google Scholar

[35]

J. O'Grady and J. Foster, Peridynamic plates and flat shells: A non-ordinary, state-based model, International Journal of Solids and Structures, 51 (2014), 4572-4579.  doi: 10.1016/j.ijsolstr.2014.09.003.  Google Scholar

[36]

S. SillingO. WecknerE. Askari and F. Bobaru, Crack nucleation in a peridynamic solid, International Journal of Fracture, 162 (2010), 219-227.  doi: 10.1007/s10704-010-9447-z.  Google Scholar

[37]

S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, 48 (2000), 175-209.  doi: 10.1016/S0022-5096(99)00029-0.  Google Scholar

[38]

S. A. Silling and R. B. Lehoucq, Convergence of peridynamics to classical elasticity theory, Journal of Elasticity, 93 (2008), 13-37.  doi: 10.1007/s10659-008-9163-3.  Google Scholar

[39]

M. Taylor and D. J. Steigmann, A two-dimensional peridynamic model for thin plates, Mathematics and Mechanics of Solids, 20 (2015), 998-1010.  doi: 10.1177/1081286513512925.  Google Scholar

[40]

X. Tian and Q. Du, Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM Journal on Numerical Analysis, 52 (2014), 1641-1665.  doi: 10.1137/130942644.  Google Scholar

Figure 1.  Two-point potential $ W^\epsilon(S,y - x) $ as a function of strain $ S $ for fixed $ y - x $
Figure 2.  Nonlocal force $ \partial_S W^\epsilon(S,y - x) $ as a function of strain $ S $ for fixed $ y - x $. Second derivative of $ W^\epsilon(S,y-x) $ is zero at $ \pm \bar{r}/\sqrt{|y -x|} $
Figure 3.  Geometry
[1]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[2]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[3]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[4]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[5]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[6]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[7]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

[8]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[9]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[10]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[11]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[12]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[13]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[14]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[15]

Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085

[16]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282

[17]

Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153

[18]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[19]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[20]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]