[1]
|
A. Allendes, E. Hernández and E. Otárola, A robust numerical method for a control problem involving singularly perturbed equations, Computers and Mathematics with Applications, 72 (2016), 974-991.
doi: 10.1016/j.camwa.2016.06.010.
|
[2]
|
T. Apel and G. Lube, Anisotropic mesh refinement for a singularly perturbed reaction diffusion model problem, Applied Numerical Mathematics, 26 (1998), 415-433.
doi: 10.1016/S0168-9274(97)00106-2.
|
[3]
|
R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept, SIAM Journal on Control and Optimization, 39 (2000), 113-132.
doi: 10.1137/S0363012999351097.
|
[4]
|
J. Bonnans and H. Zidani, Optimal control problems with partially polyhedric constraints, SIAM Journal on Control and Optimization, 37 (1999), 1726-1741.
doi: 10.1137/S0363012998333724.
|
[5]
|
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, Berlin, 1994.
doi: 10.1007/978-1-4757-4338-8.
|
[6]
|
P. Das, An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh, Numerical Algorithms, 81 (2019), 465-487.
doi: 10.1007/s11075-018-0557-4.
|
[7]
|
R. Dur$\acute{a}$n and A. Lombardi, Error estimates on anisotropic $Q_1$ elements for functions in weighted Sobolev spaces, Mathematics of Computation, 74 (2005), 1679-1706.
doi: 10.1090/S0025-5718-05-01732-1.
|
[8]
|
R. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, Journal of Mathematical Analysis and Applications, 44 (1973), 28-47.
doi: 10.1016/0022-247X(73)90022-X.
|
[9]
|
W. Gong and N. N. Yan, Adaptive finite element method for elliptic optimal control problems: Convergence and optimality, Numerische Mathematik, 135 (2017), 1121-1170.
doi: 10.1007/s00211-016-0827-9.
|
[10]
|
W. Gong, H. P. Liu and N. N. Yan, Adaptive finite element method for parabolic equations with Dirac measure, Computer Methods in Applied Mechanics and Engineering, 328 (2018), 217-241.
doi: 10.1016/j.cma.2017.08.051.
|
[11]
|
H. B. Guan and D. Y. Shi, A high accuracy NFEM for constrained optimal control problems governed by elliptic equations, Applied Mathematics and Computation, 245 (2014), 382-390.
doi: 10.1016/j.amc.2014.07.077.
|
[12]
|
H. B. Guan, D. Y. Shi and X. F. Guan, High accuracy analysis of nonconforming MFEM for constrained optimal control problems governed by Stokes equations, Applied Mathematics Letters, 53 (2016), 17-24.
doi: 10.1016/j.aml.2015.09.016.
|
[13]
|
H. B. Guan and D. Y. Shi, An efficient NFEM for optimal control problems governed by a bilinear state equation, Computers and Mathematics with Applications, 77 (2019), 1821-1827.
doi: 10.1016/j.camwa.2018.11.017.
|
[14]
|
W. Hackbusch, Multigrid Methods and Applications, Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-3-662-02427-0.
|
[15]
|
M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Computational Optimization and Applications, 30 (2005), 45-63.
doi: 10.1007/s10589-005-4559-5.
|
[16]
|
S. Kumar and M. Kumar, An analysis of overlapping domain decomposition methods for singularly perturbed reaction-diffusion problems, Journal of Computational and Applied Mathematics, 281 (2015), 250-262.
doi: 10.1016/j.cam.2014.12.018.
|
[17]
|
S. Kumar and S. C. S. Rao, A robust domain decomposition algorithm for singularly perturbed semilinear systems, International Journal of Computer Mathematics, 94 (2017), 1108-1122.
doi: 10.1080/00207160.2016.1184257.
|
[18]
|
J. C. Li, Convergence and superconvergence analysis of finite element methods on highly nonuniform anisotropic meshes for singularly perturbed reaction-diffusion problems, Applied Numerical Mathematics, 36 (2001), 129-154.
doi: 10.1016/S0168-9274(99)00145-2.
|
[19]
|
J. C. Li and M. F. Wheeler, Uniform convergence and superconvergence of mixed finite element methods on anisotropically refined grids, SIAM Journal on Numerical Analysis, 38 (2000), 770-798.
doi: 10.1137/S0036142999351212.
|
[20]
|
J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.
|
[21]
|
Q. Lin, L. Tobiska and A.H. Zhou, Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation, IMA Journal of Numerical Analysis, 25 (2005), 160-181.
doi: 10.1093/imanum/drh008.
|
[22]
|
L. B. Liu and Y. P. Chen, An adaptive moving grid method for a system of singularly perturbed initial value problems, Journal of Computational and Applied Mathematics, 274 (2015), 11-22.
doi: 10.1016/j.cam.2014.06.022.
|
[23]
|
W. B. Liu and N. N. Yan, A posteriori error estimates for control problems governed by Stokes equations, SIAM Journal on Numerical Analysis, 40 (2002), 1850-1869.
doi: 10.1137/S0036142901384009.
|
[24]
|
G. Lube and B. Tews, Optimal control of singularly perturbed advection-diffusion-reaction problems, Mathematical Models and Methods in Applied Sciences, 20 (2010), 375-395.
doi: 10.1142/S0218202510004271.
|
[25]
|
J. J. H. Miller, E. O'Riordan and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore, 1995.
doi: 10.1142/2933.
|
[26]
|
H.-G. Roos, Layer-adapted grids for singular perturbation problems, Journal of Applied Mathematics and Mechanics, 78 (1998), 291-309.
doi: 10.1002/(SICI)1521-4001(199805)78:5<291::AID-ZAMM291>3.0.CO;2-R.
|
[27]
|
H.-G. Roos and C. Reibiger, Numerical analysis of a system of singularly perturbed convection-diffusion equations related to optimal control, Numerical Mathematics: Theory, Methods and Applications, 4 (2011), 562-575.
doi: 10.4208/nmtma.2011.m1101.
|
[28]
|
Z. M. Zhang, Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems, Mathematics of Computation, 72 (2003), 1147-1177.
doi: 10.1090/S0025-5718-03-01486-8.
|
[29]
|
Z. M. Zhang and H. Q. Zhu, Uniform convergence of the LDG method for a singularly perturbed problem with the exponential boundary layer, Mathematics of Computation, 83 (2014), 635-663.
doi: 10.1090/S0025-5718-2013-02736-6.
|
[30]
|
H. Q. Zhu and Z. M. Zhang, Convergence analysis of the LDG method applied to singularly perturbed problems, Numerical Methods for Partial Differential Equations, 29 (2013), 396-421.
doi: 10.1002/num.21711.
|