Toric differential inclusions play a pivotal role in providing a rigorous interpretation of the connection between weak reversibility and the persistence of mass-action systems and polynomial dynamical systems. We introduce the notion of quasi-toric differential inclusions, which are strongly related to toric differential inclusions, but have a much simpler geometric structure. We show that every toric differential inclusion can be embedded into a quasi-toric differential inclusion and that every quasi-toric differential inclusion can be embedded into a toric differential inclusion. In particular, this implies that weakly reversible dynamical systems can be embedded into quasi-toric differential inclusions.
Citation: |
Figure 1. (a) Polyhedral fan in two dimensions. This fan has seven cones: three two-dimensional or maximal cones, three one-dimensional cones and one zero-dimensional cone. (b) Hyperplane-generated polyhedral fan in two dimensions. This fan has 13 cones: six two-dimensional cones, six one-dimensional cones and one cone of dimension zero. (c) Polyhedral fan in three dimensions. This fan has seven cones: three three-dimensional cones, three two-dimensional cones and one cone of dimension one. (d) Hyperplane-generated polyhedral fan in three dimensions. This fan has nine cones: four three-dimensional cones, four two-dimensional cones and one cone of dimension one. Cones in (a) and (b) are pointed, while cones in (c) and (d) are not pointed. Fans in (b) and (d) are hyperplane generated, while fans in (a) and (c) are not hyperplane generated
Figure 2.
Right-hand side of a toric differential inclusion (denoted by
Figure 3.
Example of a quasi-toric differential inclusion that is not well-defined in the sense of Definition 5.2. Consider a point
Figure 4.
Right-hand side of a quasi-toric differential inclusion (denoted by
Figure 7.
(a) RHS of a toric differential inclusion (denoted by
Figure 8.
(a) RHS of a quasi-toric differential inclusion (denoted by
[1] |
D. Anderson, A proof of the global attractor conjecture in the single linkage class case, SIAM J. Appl. Math., 71 (2011), 1487-1508.
doi: 10.1137/11082631X.![]() ![]() ![]() |
[2] |
D. Angeli, P. De Leenheer and E. Sontag, A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks, Math. Biosci., 210 (2007), 598-618.
doi: 10.1016/j.mbs.2007.07.003.![]() ![]() ![]() |
[3] |
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
doi: 10.1017/CBO9780511804441.![]() ![]() ![]() |
[4] |
J. Brunner and G. Craciun, Robust persistence and permanence of polynomial and power law dynamical systems, SIAM J. Appl. Math, 78 (2018), 801-825.
doi: 10.1137/17M1133762.![]() ![]() ![]() |
[5] |
G. Craciun, Toric differential inclusions and a proof of the global attractor conjecture, preprint, arXiv: 1501.02860.
doi: 1501.02860.![]() ![]() |
[6] |
G. Craciun, Polynomial dynamical systems, reaction networks, and toric differential inclusions, SIAGA, 3 (2019), 87-106.
doi: 10.1137/17M1129076.![]() ![]() ![]() |
[7] |
G. Craciun and A. Deshpande, Endotactic networks and toric differential inclusions, preprint, arXiv: 1906.08384.
doi: 1906.08384.![]() ![]() |
[8] |
G. Craciun, A. Dickenstein, A. Shiu and B. Sturmfels, Toric dynamical systems, J. Symb. Comp., 44 (2009), 1551-1565.
doi: 10.1016/j.jsc.2008.08.006.![]() ![]() ![]() |
[9] |
G. Craciun, F. Nazarov and C. Pantea, Persistence and permanence of mass-action and power-law dynamical systems, SIAM J. Appl. Math., 73 (2013), 305-329.
doi: 10.1137/100812355.![]() ![]() ![]() |
[10] |
M. Feinberg, Lectures on chemical reaction networks, Notes of Lectures Given at the Mathematics Research Center, University of Wisconsin, (1979), 49 pp.
![]() |
[11] |
M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors-I. The deficiency zero and deficiency one theorems, Chem. Eng. Sci., 42 (1987), 2229-2268.
doi: 10.1016/0009-2509(87)80099-4.![]() ![]() |
[12] |
W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, 131, The William
H. Roever Lectures in Geometry, Princeton University Press, Princeton, NJ, 1993.
doi: 10.1515/9781400882526.![]() ![]() ![]() |
[13] |
M. Gopalkrishnan, E. Miller and A. Shiu, A geometric approach to the global attractor conjecture, SIAM J. Appl. Dyn. Syst., 13 (2014), 758-797.
doi: 10.1137/130928170.![]() ![]() ![]() |
[14] |
C. M. Guldberg and P. Waage, Studies concerning affinity, J. Chem. Educ., 63 (1986), 1044.
doi: 10.1021/ed063p1044.![]() ![]() |
[15] |
J. Gunawardena, Chemical reaction network theory for in-silico biologists, Notes available for download at http://vcp.med.harvard.edu/papers/crnt.pdf, (2003).
![]() |
[16] |
A. Kushnir and S. Liu, On linear transformations of intersections, ECON - Working Papers, 255 (2017), 17 pp.
![]() |
[17] |
C. Pantea, On the persistence and global stability of mass-action systems, SIAM J. Math. Anal., 44 (2012), 1636-1673.
doi: 10.1137/110840509.![]() ![]() ![]() |
[18] |
R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, NJ, 1970.
![]() ![]() |
[19] |
E. Voit, H. Martens and S. Omholt, 150 years of the mass action law, PLOS Comput. Biol., 11 (2015), e1004012.
doi: 10.1371/journal.pcbi.1004012.![]() ![]() |
[20] |
P. Yu and G. Craciun, Mathematical analysis of chemical reaction systems, Israel Journal of Chemistry, 58 (2018), 733-741.
doi: 10.1002/ijch.201800003.![]() ![]() |
[21] |
G. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4613-8431-1.![]() ![]() ![]() |