• Previous Article
    Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate
  • DCDS-B Home
  • This Issue
  • Next Article
    Small time asymptotics for SPDEs with locally monotone coefficients
doi: 10.3934/dcdsb.2020181

Quasi-toric differential inclusions

1. 

Department of Mathematics and Biomolecular Chemistry, University of Wisconsin-Madison, 480 Lincoln Dr, Madison, WI 53706, USA

2. 

Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Dr, Madison, WI 53706, USA

* Corresponding author: craciun@math.wisc.edu

Received  October 2019 Revised  March 2020 Published  June 2020

Toric differential inclusions play a pivotal role in providing a rigorous interpretation of the connection between weak reversibility and the persistence of mass-action systems and polynomial dynamical systems. We introduce the notion of quasi-toric differential inclusions, which are strongly related to toric differential inclusions, but have a much simpler geometric structure. We show that every toric differential inclusion can be embedded into a quasi-toric differential inclusion and that every quasi-toric differential inclusion can be embedded into a toric differential inclusion. In particular, this implies that weakly reversible dynamical systems can be embedded into quasi-toric differential inclusions.

Citation: Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020181
References:
[1]

D. Anderson, A proof of the global attractor conjecture in the single linkage class case, SIAM J. Appl. Math., 71 (2011), 1487-1508.  doi: 10.1137/11082631X.  Google Scholar

[2]

D. AngeliP. De Leenheer and E. Sontag, A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks, Math. Biosci., 210 (2007), 598-618.  doi: 10.1016/j.mbs.2007.07.003.  Google Scholar

[3]

S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004. doi: 10.1017/CBO9780511804441.  Google Scholar

[4]

J. Brunner and G. Craciun, Robust persistence and permanence of polynomial and power law dynamical systems, SIAM J. Appl. Math, 78 (2018), 801-825.  doi: 10.1137/17M1133762.  Google Scholar

[5]

G. Craciun, Toric differential inclusions and a proof of the global attractor conjecture, preprint, arXiv: 1501.02860. doi: 1501.02860.  Google Scholar

[6]

G. Craciun, Polynomial dynamical systems, reaction networks, and toric differential inclusions, SIAGA, 3 (2019), 87-106.  doi: 10.1137/17M1129076.  Google Scholar

[7]

G. Craciun and A. Deshpande, Endotactic networks and toric differential inclusions, preprint, arXiv: 1906.08384. doi: 1906.08384.  Google Scholar

[8]

G. CraciunA. DickensteinA. Shiu and B. Sturmfels, Toric dynamical systems, J. Symb. Comp., 44 (2009), 1551-1565.  doi: 10.1016/j.jsc.2008.08.006.  Google Scholar

[9]

G. CraciunF. Nazarov and C. Pantea, Persistence and permanence of mass-action and power-law dynamical systems, SIAM J. Appl. Math., 73 (2013), 305-329.  doi: 10.1137/100812355.  Google Scholar

[10]

M. Feinberg, Lectures on chemical reaction networks, Notes of Lectures Given at the Mathematics Research Center, University of Wisconsin, (1979), 49 pp. Google Scholar

[11]

M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors-I. The deficiency zero and deficiency one theorems, Chem. Eng. Sci., 42 (1987), 2229-2268.  doi: 10.1016/0009-2509(87)80099-4.  Google Scholar

[12]

W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, 131, The William H. Roever Lectures in Geometry, Princeton University Press, Princeton, NJ, 1993. doi: 10.1515/9781400882526.  Google Scholar

[13]

M. GopalkrishnanE. Miller and A. Shiu, A geometric approach to the global attractor conjecture, SIAM J. Appl. Dyn. Syst., 13 (2014), 758-797.  doi: 10.1137/130928170.  Google Scholar

[14]

C. M. Guldberg and P. Waage, Studies concerning affinity, J. Chem. Educ., 63 (1986), 1044. doi: 10.1021/ed063p1044.  Google Scholar

[15]

J. Gunawardena, Chemical reaction network theory for in-silico biologists, Notes available for download at http://vcp.med.harvard.edu/papers/crnt.pdf, (2003). Google Scholar

[16]

A. Kushnir and S. Liu, On linear transformations of intersections, ECON - Working Papers, 255 (2017), 17 pp. Google Scholar

[17]

C. Pantea, On the persistence and global stability of mass-action systems, SIAM J. Math. Anal., 44 (2012), 1636-1673.  doi: 10.1137/110840509.  Google Scholar

[18]

R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, NJ, 1970.  Google Scholar

[19]

E. Voit, H. Martens and S. Omholt, 150 years of the mass action law, PLOS Comput. Biol., 11 (2015), e1004012. doi: 10.1371/journal.pcbi.1004012.  Google Scholar

[20]

P. Yu and G. Craciun, Mathematical analysis of chemical reaction systems, Israel Journal of Chemistry, 58 (2018), 733-741.  doi: 10.1002/ijch.201800003.  Google Scholar

[21]

G. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4613-8431-1.  Google Scholar

show all references

References:
[1]

D. Anderson, A proof of the global attractor conjecture in the single linkage class case, SIAM J. Appl. Math., 71 (2011), 1487-1508.  doi: 10.1137/11082631X.  Google Scholar

[2]

D. AngeliP. De Leenheer and E. Sontag, A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks, Math. Biosci., 210 (2007), 598-618.  doi: 10.1016/j.mbs.2007.07.003.  Google Scholar

[3]

S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004. doi: 10.1017/CBO9780511804441.  Google Scholar

[4]

J. Brunner and G. Craciun, Robust persistence and permanence of polynomial and power law dynamical systems, SIAM J. Appl. Math, 78 (2018), 801-825.  doi: 10.1137/17M1133762.  Google Scholar

[5]

G. Craciun, Toric differential inclusions and a proof of the global attractor conjecture, preprint, arXiv: 1501.02860. doi: 1501.02860.  Google Scholar

[6]

G. Craciun, Polynomial dynamical systems, reaction networks, and toric differential inclusions, SIAGA, 3 (2019), 87-106.  doi: 10.1137/17M1129076.  Google Scholar

[7]

G. Craciun and A. Deshpande, Endotactic networks and toric differential inclusions, preprint, arXiv: 1906.08384. doi: 1906.08384.  Google Scholar

[8]

G. CraciunA. DickensteinA. Shiu and B. Sturmfels, Toric dynamical systems, J. Symb. Comp., 44 (2009), 1551-1565.  doi: 10.1016/j.jsc.2008.08.006.  Google Scholar

[9]

G. CraciunF. Nazarov and C. Pantea, Persistence and permanence of mass-action and power-law dynamical systems, SIAM J. Appl. Math., 73 (2013), 305-329.  doi: 10.1137/100812355.  Google Scholar

[10]

M. Feinberg, Lectures on chemical reaction networks, Notes of Lectures Given at the Mathematics Research Center, University of Wisconsin, (1979), 49 pp. Google Scholar

[11]

M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors-I. The deficiency zero and deficiency one theorems, Chem. Eng. Sci., 42 (1987), 2229-2268.  doi: 10.1016/0009-2509(87)80099-4.  Google Scholar

[12]

W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, 131, The William H. Roever Lectures in Geometry, Princeton University Press, Princeton, NJ, 1993. doi: 10.1515/9781400882526.  Google Scholar

[13]

M. GopalkrishnanE. Miller and A. Shiu, A geometric approach to the global attractor conjecture, SIAM J. Appl. Dyn. Syst., 13 (2014), 758-797.  doi: 10.1137/130928170.  Google Scholar

[14]

C. M. Guldberg and P. Waage, Studies concerning affinity, J. Chem. Educ., 63 (1986), 1044. doi: 10.1021/ed063p1044.  Google Scholar

[15]

J. Gunawardena, Chemical reaction network theory for in-silico biologists, Notes available for download at http://vcp.med.harvard.edu/papers/crnt.pdf, (2003). Google Scholar

[16]

A. Kushnir and S. Liu, On linear transformations of intersections, ECON - Working Papers, 255 (2017), 17 pp. Google Scholar

[17]

C. Pantea, On the persistence and global stability of mass-action systems, SIAM J. Math. Anal., 44 (2012), 1636-1673.  doi: 10.1137/110840509.  Google Scholar

[18]

R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, NJ, 1970.  Google Scholar

[19]

E. Voit, H. Martens and S. Omholt, 150 years of the mass action law, PLOS Comput. Biol., 11 (2015), e1004012. doi: 10.1371/journal.pcbi.1004012.  Google Scholar

[20]

P. Yu and G. Craciun, Mathematical analysis of chemical reaction systems, Israel Journal of Chemistry, 58 (2018), 733-741.  doi: 10.1002/ijch.201800003.  Google Scholar

[21]

G. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4613-8431-1.  Google Scholar

Figure 1.  (a) Polyhedral fan in two dimensions. This fan has seven cones: three two-dimensional or maximal cones, three one-dimensional cones and one zero-dimensional cone. (b) Hyperplane-generated polyhedral fan in two dimensions. This fan has 13 cones: six two-dimensional cones, six one-dimensional cones and one cone of dimension zero. (c) Polyhedral fan in three dimensions. This fan has seven cones: three three-dimensional cones, three two-dimensional cones and one cone of dimension one. (d) Hyperplane-generated polyhedral fan in three dimensions. This fan has nine cones: four three-dimensional cones, four two-dimensional cones and one cone of dimension one. Cones in (a) and (b) are pointed, while cones in (c) and (d) are not pointed. Fans in (b) and (d) are hyperplane generated, while fans in (a) and (c) are not hyperplane generated
Figure 2.  Right-hand side of a toric differential inclusion (denoted by $ F_{\mathcal{F}, \delta}( \boldsymbol{X}) $) for a hyperplane-generated fan $ \mathcal{F} $. The red region represents the set of points for which $ F_{\mathcal{F}, \delta}( \boldsymbol{X}) = \mathbb{R}^2 $. For points outside the red region, the blue cones indicate $ F_{\mathcal{F}, \delta}( \boldsymbol{X}) $, which is not $ \mathbb{R}^2 $
Figure 3.  Example of a quasi-toric differential inclusion that is not well-defined in the sense of Definition 5.2. Consider a point $ \boldsymbol{X} $ labeled by a black dot in the figure. If we iterate through the steps of Definition 5.1, we get $ dist( \boldsymbol{X}, C_1)\leq d_1 $ and $ dist( \boldsymbol{X}, \tilde{C}_1)\leq d_1 $ in Step 1. It is not clear whether $ F_{\mathcal{F}, \boldsymbol{d}}( \boldsymbol{X}) = C_1^o $ or $ F_{\mathcal{F}, \boldsymbol{d}}( \boldsymbol{X}) = {\tilde{C}_1}^o $ and hence the notion of quasi-toric differential inclusion is not well-defined for this choice of $ \boldsymbol{d} = (d_0, d_1) $
Figure 4.  Right-hand side of a quasi-toric differential inclusion (denoted by $ F_{\mathcal{F}, \boldsymbol{d}}( \boldsymbol{X}) $) for a hyperplane-generated fan $ \mathcal{F} $. The red circle represents the set of points for which $ F_{\mathcal{F}, \boldsymbol{d}}( \boldsymbol{X}) = \mathbb{R}^2 $. For points outside the red circle, the blue cones indicate $ F_{\mathcal{F}, \boldsymbol{d}}( \boldsymbol{X}) $. The numbers $ d_0, d_1 $ are chosen so that the quasi-toric differential inclusion generated by $ \mathcal{F} $ and $ \boldsymbol{d} = (d_0, d_1) $ is well-defined in the sense of Definition 5.2
Figure 5.  Two dimensional illustration of Lemma 6.3
Figure 6.  Two-dimensional illustration of Lemma 6.4
Figure 7.  (a) RHS of a toric differential inclusion (denoted by $ F_{\mathcal{F}, \delta}( \boldsymbol{X}) $) for a hyperplane-generated fan $ \mathcal{F} $. (b) RHS of a quasi-toric differential inclusion (denoted by $ F_{\mathcal{F}, { \boldsymbol{d}}}( \boldsymbol{X}) $) such that the toric differential inclusion given in part (a) can be embedded into this quasi-toric differential inclusion, i.e., $ F_{\mathcal{F}, \delta}( \boldsymbol{X})\subseteq F_{\mathcal{F}, \boldsymbol{d}}( \boldsymbol{X}) $ for every $ \boldsymbol{X}\in\mathbb{R}^n $. As in the proof of Theorem 7.3, the vector $ \boldsymbol{d} $ is constructed as follows: we set $ d_1 = \delta $ and choose $ d_0 $ large enough ($ d_0 = \lambda\alpha d_1 $) so that the quasi-toric differential inclusion is well-defined
Figure 8.  (a) RHS of a quasi-toric differential inclusion (denoted by $ F_{\mathcal{F}, \boldsymbol{d}}( \boldsymbol{X}) $) for a hyperplane-generated fan $ \mathcal{F} $. (b) RHS of a toric differential inclusion (denoted by $ F_{\mathcal{F}, \delta}( \boldsymbol{X}) $) such that the quasi-toric differential inclusion given in part (a) can be embedded into this toric differential inclusion, i.e., $ F_{\mathcal{F}, \boldsymbol{d}}( \boldsymbol{X})\subseteq F_{\mathcal{F}, \delta}( \boldsymbol{X}) $ for every $ \boldsymbol{X}\in\mathbb{R}^n $. As in the proof of Theorem 8.1, we choose $ \delta = \max(d_0, d_1) = d_0 $
[1]

A. Jiménez-Casas. Invariant regions and global existence for a phase field model. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 273-281. doi: 10.3934/dcdss.2008.1.273

[2]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[3]

Yirong Jiang, Nanjing Huang, Zhouchao Wei. Existence of a global attractor for fractional differential hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1193-1212. doi: 10.3934/dcdsb.2019216

[4]

Jacson Simsen, José Valero. Global attractors for $p$-Laplacian differential inclusions in unbounded domains. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3239-3267. doi: 10.3934/dcdsb.2016096

[5]

Mariusz Michta. On solutions to stochastic differential inclusions. Conference Publications, 2003, 2003 (Special) : 618-622. doi: 10.3934/proc.2003.2003.618

[6]

Thomas Lorenz. Mutational inclusions: Differential inclusions in metric spaces. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 629-654. doi: 10.3934/dcdsb.2010.14.629

[7]

Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455

[8]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

[9]

Andrej V. Plotnikov, Tatyana A. Komleva, Liliya I. Plotnikova. The averaging of fuzzy hyperbolic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1987-1998. doi: 10.3934/dcdsb.2017117

[10]

Sergey Dashkovskiy, Oleksiy Kapustyan, Iryna Romaniuk. Global attractors of impulsive parabolic inclusions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1875-1886. doi: 10.3934/dcdsb.2017111

[11]

Joseph M. Mahaffy, Timothy C. Busken. Regions of stability for a linear differential equation with two rationally dependent delays. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4955-4986. doi: 10.3934/dcds.2015.35.4955

[12]

Shengqing Hu. Persistence of invariant tori for almost periodically forced reversible systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4497-4518. doi: 10.3934/dcds.2020188

[13]

Hermano Frid. Invariant regions under Lax-Friedrichs scheme for multidimensional systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 585-593. doi: 10.3934/dcds.1995.1.585

[14]

Tomás Caraballo, José A. Langa, José Valero. Stabilisation of differential inclusions and PDEs without uniqueness by noise. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1375-1392. doi: 10.3934/cpaa.2008.7.1375

[15]

Piermarco Cannarsa, Peter R. Wolenski. Semiconcavity of the value function for a class of differential inclusions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 453-466. doi: 10.3934/dcds.2011.29.453

[16]

Janosch Rieger. The Euler scheme for state constrained ordinary differential inclusions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2729-2744. doi: 10.3934/dcdsb.2016070

[17]

Mieczysław Cichoń, Bianca Satco. On the properties of solutions set for measure driven differential inclusions. Conference Publications, 2015, 2015 (special) : 287-296. doi: 10.3934/proc.2015.0287

[18]

Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1977-1986. doi: 10.3934/dcdsb.2017116

[19]

Thomas Lorenz. Partial differential inclusions of transport type with state constraints. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1309-1340. doi: 10.3934/dcdsb.2019018

[20]

Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations & Control Theory, 2019, 8 (3) : 603-619. doi: 10.3934/eect.2019028

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]