May  2021, 26(5): 2361-2370. doi: 10.3934/dcdsb.2020182

Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters

1. 

Department of Mathematics, University of Mentouri Constantine 1, 25000, Algeria

2. 

Department of Sciences and Technology, Mathematics and their Interactions Laboratory, University of Mila, 43000, Algeria

* Corresponding author: Rabiaa Ouahabi

Received  October 2019 Revised  February 2020 Published  May 2021 Early access  June 2020

This paper proposes a new scheme generalized hybrid projective synchronization for two different chaotic systems using adaptive control, where the master and slave systems do not necessarily have the same number of uncertain parameters. In this method the master system is synchronized by the sum of hybrid state variables for the slave system. Based on Lyapunov stability theory, an adaptive controller for the synchronization of two different chaotic systems is proposed, This method is also applicable if the master and slave systems are identical. As example the generalized hybrid projective synchronization between Vaidyanathan and Zeraoulia chaotic systems are discussed. Numerical simulation are provided to demonstrate the effectiveness of the proposed method.

Citation: Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182
References:
[1]

E. N. Lorenz, Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20 (1963), 130-141.  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

[2]

O. E. Rössler, An equation for continuous chaos, Physics Letters A, 57 (1976), 397-398. 

[3]

J. C. Sprott, Some simple chaotic flows, Physical Review E, 50 (1994), 647-650.  doi: 10.1103/PhysRevE.50.R647.

[4]

J. Lü and G. Chen, A new chaotic attractor coined, International Journal of Bifurcation and Chaos, 12 (2002), 659-661.  doi: 10.1142/S0218127402004620.

[5]

Z. Elhadj, Analysis of a new three-dimensional quadratic chaotic system, Radioengineering, 17 (2008), 9 pp.

[6]

M.-S. Abdelouahab and N.-E. Hamri, A new chaotic attractor from hybrid optical bistable system, Nonlinear Dynamics, 67 (2012), 457-463.  doi: 10.1007/s11071-011-9994-5.

[7]

S.-J. Prakash and R.-B. Krishna, A more chaotic and easily hardware implementable new 3-D chaotic system in comparison with 50 reported systems, Nonlinear Dynamics, 93 (2018), 1121-1148. 

[8]

Ü. ÇavuşoǧluS. PanahiA. AkgülS. Jafari and S. Kaçar, A new chaotic system with hidden attractor and its engineering applications: Analog circuit realization and image encryption, Analog Integrated Circuits and Signal Processing, 98 (2019), 85-99. 

[9]

L. Philippe, S. John and A. N. Jordan, Chaos in continuously monitored quantum systems: An optimal-path approach, Physical Review A, 98 (2018), 012141.

[10]

P. SadeghiS. PanahiB. HatefS. Jafari and J. C. Sprott, A new chaotic model for glucose-insulin regulatory system, Chaos, Solitons & Fractals, 112 (2018), 44-51.  doi: 10.1016/j.chaos.2018.04.029.

[11]

K. Uǧur Erkin, S. Çiçek and Y. Uyaroǧlu, Secure communication with chaos and electronic circuit design using passivity-based synchronization, Journal of Circuits, Systems and Computers, 27 (2018), 1850057. doi: 10.1109/81.956024.

[12]

D. AliU. Yılmaz and A. T. Özcerit, A novel chaotic system for secure communication applications, Information Technology and Control, 44 (2015), 271-278. 

[13]

T. Yamada and H. Fujisaka, Stability theory of synchronized motion in coupled oscillator systems. II: The mapping approach, Progress of Theoretical Physics, 70 (1983), 1240-1248.  doi: 10.1143/PTP.70.1240.

[14]

L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Physical Review Letters, 64 (1990), 821-824.  doi: 10.1103/PhysRevLett.64.821.

[15]

M. S. Abd-Elouahab, N. Hamri and J. Wang, Chaos control of afractional-order financial system, Mathematical Problems in Engineering, 2010 (2010). doi: 10.1155/2010/270646.

[16]

D. ChenR. ZhangM. Xiaoyi and S. Liu, Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme, Nonlinear Dynamics, 69 (2012), 35-55.  doi: 10.1007/s11071-011-0244-7.

[17]

A. Senouci and A. Boukabou, Predictive control and synchronization of chaotic and hyperchaotic systems based on a T–S fuzzy model, Mathematics and Computers in Simulation, 105 (2014), 62-78.  doi: 10.1016/j.matcom.2014.05.007.

[18]

K. AyubB. Mridula and I. Aysha, Multi-switching compound synchronization of four different chaotic systems via active backstepping method, International Journal of Dynamics and Control, 6 (2018), 1126-1135.  doi: 10.1007/s40435-017-0365-z.

[19]

G. Li and S. Chunxiang, Adaptive neural network backstepping control of fractional-order Chua–Hartley chaotic system, Advances in Difference Equations, 2019 (2019), 148. doi: 10.1186/s13662-019-2099-z.

[20]

L. Jianquan and C. Jinde, Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters, Chaos: An Interdisciplinary Journal of Nonlinear Science, 15 (2005), 043901. doi: 10.1063/1.2089207.

[21]

G. Zheng-Ming and C. Chien-Cheng, Phase synchronization of coupled chaotic multiple time scales systems, Chaos, Solitons & Fractals, 20 (2004), 639-647.  doi: 10.1016/j.chaos.2004.11.032.

[22]

S. WenZ. ZengT. Huang and Q. Meng, Lag synchronization of switched neural networks via neural activation function and applications in image encryption, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 1493-1502.  doi: 10.1109/TNNLS.2014.2387355.

[23]

Z. Xuebing and Z. Honglan, Anti-synchronization of two different hyperchaotic systems via active and adaptive control, International Journal of Nonlinear Science, 6 (2008), 216-223. 

[24]

L. ChengrenL. LingZ. GuannanL. GangT. JingG. Jiajia and W. Zhouyang, Projective synchronization of uncertain scale-free network based on modified sliding mode control technique, Physica A: Statistical Mechanics and its Applications, 473 (2017), 511-521.  doi: 10.1016/j.physa.2017.01.040.

[25]

R. Mainieri and J. Rehacek, Projective synchronization in three-dimensional chaotic systems, Physical Review Letters, 82 (1999), 3042.

[26]

G.-H. Li, Modified projective synchronization of chaotic system, Chaos, Solitons Fractals, 32 (2007), 1786-1790.  doi: 10.1016/j.chaos.2005.12.009.

[27]

J. SunJ. GuoC. YangA. Zheng and X. Zhang, Adaptive generalized hybrid function projective dislocated synchronization of new four-dimentional uncertain chaotic systems, Applied Mathematics and Computation, 252 (2015), 304-314.  doi: 10.1016/j.amc.2014.12.004.

[28]

J.Chen, J. Sun, M. Chi and C. Xin-Ming, A novel scheme adaptive hybrid dislocated synchronization for two identical and different memristor chaotic oscillator systems with uncertain parameters, Abstract and Applied Analysis, 2014 (2014). doi: 10.1155/2014/675840.

[29]

M. Krsti, K. Ioannis and V. Petar, Nonlinear and Adaptive Control Design, {Wiley New York}, (1995), 576.

[30]

S. Vaidyanathan, A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities, Far East J. Math. Sci, 84 (2014), 219-226. 

[31]

W. Hahn, Stability of Motion, Die Grundlehren der mathematischen Wissenschaften, 138, Springer-Verlag New York, Inc., New York, 1967.

show all references

References:
[1]

E. N. Lorenz, Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20 (1963), 130-141.  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

[2]

O. E. Rössler, An equation for continuous chaos, Physics Letters A, 57 (1976), 397-398. 

[3]

J. C. Sprott, Some simple chaotic flows, Physical Review E, 50 (1994), 647-650.  doi: 10.1103/PhysRevE.50.R647.

[4]

J. Lü and G. Chen, A new chaotic attractor coined, International Journal of Bifurcation and Chaos, 12 (2002), 659-661.  doi: 10.1142/S0218127402004620.

[5]

Z. Elhadj, Analysis of a new three-dimensional quadratic chaotic system, Radioengineering, 17 (2008), 9 pp.

[6]

M.-S. Abdelouahab and N.-E. Hamri, A new chaotic attractor from hybrid optical bistable system, Nonlinear Dynamics, 67 (2012), 457-463.  doi: 10.1007/s11071-011-9994-5.

[7]

S.-J. Prakash and R.-B. Krishna, A more chaotic and easily hardware implementable new 3-D chaotic system in comparison with 50 reported systems, Nonlinear Dynamics, 93 (2018), 1121-1148. 

[8]

Ü. ÇavuşoǧluS. PanahiA. AkgülS. Jafari and S. Kaçar, A new chaotic system with hidden attractor and its engineering applications: Analog circuit realization and image encryption, Analog Integrated Circuits and Signal Processing, 98 (2019), 85-99. 

[9]

L. Philippe, S. John and A. N. Jordan, Chaos in continuously monitored quantum systems: An optimal-path approach, Physical Review A, 98 (2018), 012141.

[10]

P. SadeghiS. PanahiB. HatefS. Jafari and J. C. Sprott, A new chaotic model for glucose-insulin regulatory system, Chaos, Solitons & Fractals, 112 (2018), 44-51.  doi: 10.1016/j.chaos.2018.04.029.

[11]

K. Uǧur Erkin, S. Çiçek and Y. Uyaroǧlu, Secure communication with chaos and electronic circuit design using passivity-based synchronization, Journal of Circuits, Systems and Computers, 27 (2018), 1850057. doi: 10.1109/81.956024.

[12]

D. AliU. Yılmaz and A. T. Özcerit, A novel chaotic system for secure communication applications, Information Technology and Control, 44 (2015), 271-278. 

[13]

T. Yamada and H. Fujisaka, Stability theory of synchronized motion in coupled oscillator systems. II: The mapping approach, Progress of Theoretical Physics, 70 (1983), 1240-1248.  doi: 10.1143/PTP.70.1240.

[14]

L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Physical Review Letters, 64 (1990), 821-824.  doi: 10.1103/PhysRevLett.64.821.

[15]

M. S. Abd-Elouahab, N. Hamri and J. Wang, Chaos control of afractional-order financial system, Mathematical Problems in Engineering, 2010 (2010). doi: 10.1155/2010/270646.

[16]

D. ChenR. ZhangM. Xiaoyi and S. Liu, Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme, Nonlinear Dynamics, 69 (2012), 35-55.  doi: 10.1007/s11071-011-0244-7.

[17]

A. Senouci and A. Boukabou, Predictive control and synchronization of chaotic and hyperchaotic systems based on a T–S fuzzy model, Mathematics and Computers in Simulation, 105 (2014), 62-78.  doi: 10.1016/j.matcom.2014.05.007.

[18]

K. AyubB. Mridula and I. Aysha, Multi-switching compound synchronization of four different chaotic systems via active backstepping method, International Journal of Dynamics and Control, 6 (2018), 1126-1135.  doi: 10.1007/s40435-017-0365-z.

[19]

G. Li and S. Chunxiang, Adaptive neural network backstepping control of fractional-order Chua–Hartley chaotic system, Advances in Difference Equations, 2019 (2019), 148. doi: 10.1186/s13662-019-2099-z.

[20]

L. Jianquan and C. Jinde, Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters, Chaos: An Interdisciplinary Journal of Nonlinear Science, 15 (2005), 043901. doi: 10.1063/1.2089207.

[21]

G. Zheng-Ming and C. Chien-Cheng, Phase synchronization of coupled chaotic multiple time scales systems, Chaos, Solitons & Fractals, 20 (2004), 639-647.  doi: 10.1016/j.chaos.2004.11.032.

[22]

S. WenZ. ZengT. Huang and Q. Meng, Lag synchronization of switched neural networks via neural activation function and applications in image encryption, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 1493-1502.  doi: 10.1109/TNNLS.2014.2387355.

[23]

Z. Xuebing and Z. Honglan, Anti-synchronization of two different hyperchaotic systems via active and adaptive control, International Journal of Nonlinear Science, 6 (2008), 216-223. 

[24]

L. ChengrenL. LingZ. GuannanL. GangT. JingG. Jiajia and W. Zhouyang, Projective synchronization of uncertain scale-free network based on modified sliding mode control technique, Physica A: Statistical Mechanics and its Applications, 473 (2017), 511-521.  doi: 10.1016/j.physa.2017.01.040.

[25]

R. Mainieri and J. Rehacek, Projective synchronization in three-dimensional chaotic systems, Physical Review Letters, 82 (1999), 3042.

[26]

G.-H. Li, Modified projective synchronization of chaotic system, Chaos, Solitons Fractals, 32 (2007), 1786-1790.  doi: 10.1016/j.chaos.2005.12.009.

[27]

J. SunJ. GuoC. YangA. Zheng and X. Zhang, Adaptive generalized hybrid function projective dislocated synchronization of new four-dimentional uncertain chaotic systems, Applied Mathematics and Computation, 252 (2015), 304-314.  doi: 10.1016/j.amc.2014.12.004.

[28]

J.Chen, J. Sun, M. Chi and C. Xin-Ming, A novel scheme adaptive hybrid dislocated synchronization for two identical and different memristor chaotic oscillator systems with uncertain parameters, Abstract and Applied Analysis, 2014 (2014). doi: 10.1155/2014/675840.

[29]

M. Krsti, K. Ioannis and V. Petar, Nonlinear and Adaptive Control Design, {Wiley New York}, (1995), 576.

[30]

S. Vaidyanathan, A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities, Far East J. Math. Sci, 84 (2014), 219-226. 

[31]

W. Hahn, Stability of Motion, Die Grundlehren der mathematischen Wissenschaften, 138, Springer-Verlag New York, Inc., New York, 1967.

Figure 1.  Estimated unknown parameters $ \overset{\sim }{\alpha }_{1}\left( t\right) , $ $ \overset{\sim }{\alpha }_{2}\left( t\right) , $ $ \overset{\sim }{\alpha }_{3}\left( t\right) $ and $ \overset{\sim }{\alpha }_{4}\left( t\right) $ of the master Vaidyanathan system (19), we observe that the estimation values of unknown parameters converge to their real values $ \alpha _{1} = 25, \alpha _{2} = 33, \alpha _{3} = 11, \alpha _{4} = 6 $
Figure 2.  Estimated unknown parameters $ \overset{\sim }{\beta } _{1}\left( t\right) , $ $ \overset{\sim }{\beta }_{2}\left( t\right) , $ $ \overset{\sim }{\beta }_{3}\left( t\right) $ of the slave Zeraoulia system (20), we observe that the estimation values of unknown parameters converge to their real values $ \beta _{1} = 36, $ $ \beta _{2} = 25, $ $ \beta _{3} = 3 $
Figure 3.  Synchronization errors $ e_1, e_2, e_3 $ between Vaidynathan and Zeraoulia systems (19) and (20), we observe that the errors converge to zero when the time increases
[1]

Sebastian Hage-Packhäuser, Michael Dellnitz. Stabilization via symmetry switching in hybrid dynamical systems. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 239-263. doi: 10.3934/dcdsb.2011.16.239

[2]

Samuel Bowong, Jean Luc Dimi. Adaptive synchronization of a class of uncertain chaotic systems. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 235-248. doi: 10.3934/dcdsb.2008.9.235

[3]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial and Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

[4]

Stefano Galatolo. Global and local complexity in weakly chaotic dynamical systems. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1607-1624. doi: 10.3934/dcds.2003.9.1607

[5]

Sorin Micu, Jaime H. Ortega, Lionel Rosier, Bing-Yu Zhang. Control and stabilization of a family of Boussinesq systems. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 273-313. doi: 10.3934/dcds.2009.24.273

[6]

Kathrin Flasskamp, Sebastian Hage-Packhäuser, Sina Ober-Blöbaum. Symmetry exploiting control of hybrid mechanical systems. Journal of Computational Dynamics, 2015, 2 (1) : 25-50. doi: 10.3934/jcd.2015.2.25

[7]

Fatiha Alabau-Boussouira, Piermarco Cannarsa, Roberto Guglielmi. Indirect stabilization of weakly coupled systems with hybrid boundary conditions. Mathematical Control and Related Fields, 2011, 1 (4) : 413-436. doi: 10.3934/mcrf.2011.1.413

[8]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[9]

Serge Nicaise. Control and stabilization of 2 × 2 hyperbolic systems on graphs. Mathematical Control and Related Fields, 2017, 7 (1) : 53-72. doi: 10.3934/mcrf.2017004

[10]

Guoliang Cai, Lan Yao, Pei Hu, Xiulei Fang. Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2019-2028. doi: 10.3934/dcdsb.2013.18.2019

[11]

Yanli Han, Yan Gao. Determining the viability for hybrid control systems on a region with piecewise smooth boundary. Numerical Algebra, Control and Optimization, 2015, 5 (1) : 1-9. doi: 10.3934/naco.2015.5.1

[12]

David L. Russell. Control via decoupling of a class of second order linear hybrid systems. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1321-1334. doi: 10.3934/dcdss.2014.7.1321

[13]

Kobamelo Mashaba, Jianxing Li, Honglei Xu, Xinhua Jiang. Optimal control of hybrid manufacturing systems by log-exponential smoothing aggregation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1711-1719. doi: 10.3934/dcdss.2020100

[14]

Wandi Ding. Optimal control on hybrid ODE Systems with application to a tick disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 633-659. doi: 10.3934/mbe.2007.4.633

[15]

David L. Russell. Modeling and control of hybrid beam systems with rotating tip component. Evolution Equations and Control Theory, 2014, 3 (2) : 305-329. doi: 10.3934/eect.2014.3.305

[16]

A. Alessandri, F. Bedouhene, D. Bouhadjra, A. Zemouche, P. Bagnerini. Observer-based control for a class of hybrid linear and nonlinear systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1213-1231. doi: 10.3934/dcdss.2020376

[17]

James P. Nelson, Mark J. Balas. Direct model reference adaptive control of linear systems with input/output delays. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 445-462. doi: 10.3934/naco.2013.3.445

[18]

Mattia Bongini, Massimo Fornasier. Sparse stabilization of dynamical systems driven by attraction and avoidance forces. Networks and Heterogeneous Media, 2014, 9 (1) : 1-31. doi: 10.3934/nhm.2014.9.1

[19]

Aleksandar Zatezalo, Dušan M. Stipanović. Control of dynamical systems with discrete and uncertain observations. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4665-4681. doi: 10.3934/dcds.2015.35.4665

[20]

Elena Goncharova, Maxim Staritsyn. Optimal control of dynamical systems with polynomial impulses. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4367-4384. doi: 10.3934/dcds.2015.35.4367

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (366)
  • HTML views (305)
  • Cited by (0)

Other articles
by authors

[Back to Top]