\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters

  • * Corresponding author: Rabiaa Ouahabi

    * Corresponding author: Rabiaa Ouahabi 
Abstract Full Text(HTML) Figure(3) Related Papers Cited by
  • This paper proposes a new scheme generalized hybrid projective synchronization for two different chaotic systems using adaptive control, where the master and slave systems do not necessarily have the same number of uncertain parameters. In this method the master system is synchronized by the sum of hybrid state variables for the slave system. Based on Lyapunov stability theory, an adaptive controller for the synchronization of two different chaotic systems is proposed, This method is also applicable if the master and slave systems are identical. As example the generalized hybrid projective synchronization between Vaidyanathan and Zeraoulia chaotic systems are discussed. Numerical simulation are provided to demonstrate the effectiveness of the proposed method.

    Mathematics Subject Classification: Primary: 34H10, 37C75; Secondary: 93D21, 93D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Estimated unknown parameters $ \overset{\sim }{\alpha }_{1}\left( t\right) , $ $ \overset{\sim }{\alpha }_{2}\left( t\right) , $ $ \overset{\sim }{\alpha }_{3}\left( t\right) $ and $ \overset{\sim }{\alpha }_{4}\left( t\right) $ of the master Vaidyanathan system (19), we observe that the estimation values of unknown parameters converge to their real values $ \alpha _{1} = 25, \alpha _{2} = 33, \alpha _{3} = 11, \alpha _{4} = 6 $

    Figure 2.  Estimated unknown parameters $ \overset{\sim }{\beta } _{1}\left( t\right) , $ $ \overset{\sim }{\beta }_{2}\left( t\right) , $ $ \overset{\sim }{\beta }_{3}\left( t\right) $ of the slave Zeraoulia system (20), we observe that the estimation values of unknown parameters converge to their real values $ \beta _{1} = 36, $ $ \beta _{2} = 25, $ $ \beta _{3} = 3 $

    Figure 3.  Synchronization errors $ e_1, e_2, e_3 $ between Vaidynathan and Zeraoulia systems (19) and (20), we observe that the errors converge to zero when the time increases

  • [1] E. N. Lorenz, Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20 (1963), 130-141.  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
    [2] O. E. Rössler, An equation for continuous chaos, Physics Letters A, 57 (1976), 397-398. 
    [3] J. C. Sprott, Some simple chaotic flows, Physical Review E, 50 (1994), 647-650.  doi: 10.1103/PhysRevE.50.R647.
    [4] J. Lü and G. Chen, A new chaotic attractor coined, International Journal of Bifurcation and Chaos, 12 (2002), 659-661.  doi: 10.1142/S0218127402004620.
    [5] Z. Elhadj, Analysis of a new three-dimensional quadratic chaotic system, Radioengineering, 17 (2008), 9 pp.
    [6] M.-S. Abdelouahab and N.-E. Hamri, A new chaotic attractor from hybrid optical bistable system, Nonlinear Dynamics, 67 (2012), 457-463.  doi: 10.1007/s11071-011-9994-5.
    [7] S.-J. Prakash and R.-B. Krishna, A more chaotic and easily hardware implementable new 3-D chaotic system in comparison with 50 reported systems, Nonlinear Dynamics, 93 (2018), 1121-1148. 
    [8] Ü. ÇavuşoǧluS. PanahiA. AkgülS. Jafari and S. Kaçar, A new chaotic system with hidden attractor and its engineering applications: Analog circuit realization and image encryption, Analog Integrated Circuits and Signal Processing, 98 (2019), 85-99. 
    [9] L. Philippe, S. John and A. N. Jordan, Chaos in continuously monitored quantum systems: An optimal-path approach, Physical Review A, 98 (2018), 012141.
    [10] P. SadeghiS. PanahiB. HatefS. Jafari and J. C. Sprott, A new chaotic model for glucose-insulin regulatory system, Chaos, Solitons & Fractals, 112 (2018), 44-51.  doi: 10.1016/j.chaos.2018.04.029.
    [11] K. Uǧur Erkin, S. Çiçek and Y. Uyaroǧlu, Secure communication with chaos and electronic circuit design using passivity-based synchronization, Journal of Circuits, Systems and Computers, 27 (2018), 1850057. doi: 10.1109/81.956024.
    [12] D. AliU. Yılmaz and A. T. Özcerit, A novel chaotic system for secure communication applications, Information Technology and Control, 44 (2015), 271-278. 
    [13] T. Yamada and H. Fujisaka, Stability theory of synchronized motion in coupled oscillator systems. II: The mapping approach, Progress of Theoretical Physics, 70 (1983), 1240-1248.  doi: 10.1143/PTP.70.1240.
    [14] L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Physical Review Letters, 64 (1990), 821-824.  doi: 10.1103/PhysRevLett.64.821.
    [15] M. S. Abd-Elouahab, N. Hamri and J. Wang, Chaos control of afractional-order financial system, Mathematical Problems in Engineering, 2010 (2010). doi: 10.1155/2010/270646.
    [16] D. ChenR. ZhangM. Xiaoyi and S. Liu, Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme, Nonlinear Dynamics, 69 (2012), 35-55.  doi: 10.1007/s11071-011-0244-7.
    [17] A. Senouci and A. Boukabou, Predictive control and synchronization of chaotic and hyperchaotic systems based on a T–S fuzzy model, Mathematics and Computers in Simulation, 105 (2014), 62-78.  doi: 10.1016/j.matcom.2014.05.007.
    [18] K. AyubB. Mridula and I. Aysha, Multi-switching compound synchronization of four different chaotic systems via active backstepping method, International Journal of Dynamics and Control, 6 (2018), 1126-1135.  doi: 10.1007/s40435-017-0365-z.
    [19] G. Li and S. Chunxiang, Adaptive neural network backstepping control of fractional-order Chua–Hartley chaotic system, Advances in Difference Equations, 2019 (2019), 148. doi: 10.1186/s13662-019-2099-z.
    [20] L. Jianquan and C. Jinde, Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters, Chaos: An Interdisciplinary Journal of Nonlinear Science, 15 (2005), 043901. doi: 10.1063/1.2089207.
    [21] G. Zheng-Ming and C. Chien-Cheng, Phase synchronization of coupled chaotic multiple time scales systems, Chaos, Solitons & Fractals, 20 (2004), 639-647.  doi: 10.1016/j.chaos.2004.11.032.
    [22] S. WenZ. ZengT. Huang and Q. Meng, Lag synchronization of switched neural networks via neural activation function and applications in image encryption, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 1493-1502.  doi: 10.1109/TNNLS.2014.2387355.
    [23] Z. Xuebing and Z. Honglan, Anti-synchronization of two different hyperchaotic systems via active and adaptive control, International Journal of Nonlinear Science, 6 (2008), 216-223. 
    [24] L. ChengrenL. LingZ. GuannanL. GangT. JingG. Jiajia and W. Zhouyang, Projective synchronization of uncertain scale-free network based on modified sliding mode control technique, Physica A: Statistical Mechanics and its Applications, 473 (2017), 511-521.  doi: 10.1016/j.physa.2017.01.040.
    [25] R. Mainieri and J. Rehacek, Projective synchronization in three-dimensional chaotic systems, Physical Review Letters, 82 (1999), 3042.
    [26] G.-H. Li, Modified projective synchronization of chaotic system, Chaos, Solitons Fractals, 32 (2007), 1786-1790.  doi: 10.1016/j.chaos.2005.12.009.
    [27] J. SunJ. GuoC. YangA. Zheng and X. Zhang, Adaptive generalized hybrid function projective dislocated synchronization of new four-dimentional uncertain chaotic systems, Applied Mathematics and Computation, 252 (2015), 304-314.  doi: 10.1016/j.amc.2014.12.004.
    [28] J.Chen, J. Sun, M. Chi and C. Xin-Ming, A novel scheme adaptive hybrid dislocated synchronization for two identical and different memristor chaotic oscillator systems with uncertain parameters, Abstract and Applied Analysis, 2014 (2014). doi: 10.1155/2014/675840.
    [29] M. Krsti, K. Ioannis and V. Petar, Nonlinear and Adaptive Control Design, {Wiley New York}, (1995), 576.
    [30] S. Vaidyanathan, A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities, Far East J. Math. Sci, 84 (2014), 219-226. 
    [31] W. Hahn, Stability of Motion, Die Grundlehren der mathematischen Wissenschaften, 138, Springer-Verlag New York, Inc., New York, 1967.
  • 加载中

Figures(3)

SHARE

Article Metrics

HTML views(1669) PDF downloads(412) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return