
-
Previous Article
A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems
- DCDS-B Home
- This Issue
-
Next Article
Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters
A nonisothermal thermodynamical model of liquid-vapor interaction with metastability
1. | Université de Nantes & CNRS UMR 6629, Laboratoire de Mathematiques Jean Leray, 2, rue de la Houssinière, BP 92208, F-44322 Nantes Cedex 3, France |
2. | Université d'Orléans, Université de Tours & CNRS UMR 7013, Institut Denis Poisson, Rue de Chartres, BP 6759, F-45067 Orléans Cedex 2, France |
The paper concerns the construction of a compressible liquid-vapor relaxation model which is able to capture the metastable states of the non isothermal van der Waals model as well as saturation states. Starting from the Gibbs formalism, we propose a dynamical system which complies with the second law of thermodynamics. Numerical simulations illustrate the expected behaviour of metastable states: an initial metastable condition submitted to a certain perturbation may stay in the metastable state or reaches a saturation state. The dynamical system is then coupled to the dynamics of the compressible fluid using an Euler set of equations supplemented by convection equations on the fractions of volume, mass and energy of one of the phases.
References:
[1] |
M. R. Baer and J. W. Nunziato,
A two phase mixture theory for the deflagration to detonation (ddt) transition in reactive granular materials, Int. J. Multiphase Flow, 12 (1986), 861-889.
doi: 10.1016/0301-9322(86)90033-9. |
[2] | |
[3] |
T. Barberon and P. Helluy,
Finite volume simulation of cavitating flows, Computers and Fluids, 34 (2005), 832-858.
doi: 10.1016/j.compfluid.2004.06.004. |
[4] |
J. Bartak,
A study of the rapid depressurization of hot water and the dynamics of vapour bubble generation in superheated water, Int. J. Multiph. Flow, 16 (1990), 789-98.
doi: 10.1016/0301-9322(90)90004-3. |
[5] |
H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2$^{nd}$ edition, Wiley and Sons, 1985.
doi: 10.1119/1.19071. |
[6] |
F. Caro, Modélisation et simulation numérique des transitions de phase liquide vapeur, PhD thesis, Ecole Polytechnique X, 2004. |
[7] |
M. De Lorenzo, Modelling and numerical simulation of metastable two-phase flows, PhD thesis, Université Paris-Saclay, 2018. |
[8] |
M. De Lorenzo, P. Lafon, M. Di Matteo, M. Pelanti, J.-M. Seynhaeve and Y. Bartosiewicz,
Homogeneous two-phase flow models and accurate steam-water table look-up method for fast transient simulations, Int. J. Multiph. Flow, 95 (2017), 199-219.
doi: 10.1016/j.ijmultiphaseflow.2017.06.001. |
[9] |
M. De Lorenzo, P. Lafon and M. Pelanti,
A hyperbolic phase-transition model with non-instantaneous EoS-independent relaxation procedures, J. Comput. Phys., 379 (2019), 279-308.
doi: 10.1016/j.jcp.2018.12.002. |
[10] |
G. Faccanoni, S. Kokh and G. Allaire,
Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium, ESAIM Math. Model. Numer. Anal., 46 (2012), 1029-1054.
doi: 10.1051/m2an/2011069. |
[11] |
S. Fechter, C.-D. Munz, C. Rohde and C. Zeiler,
A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension, J. Comput. Phys., 336 (2017), 347-374.
doi: 10.1016/j.jcp.2017.02.001. |
[12] |
T. Gallouët, J.-M. Hérard and N. Seguin, Some recent finite volume schemes to compute Euler equations using real gas EOS, Internat. J. Numer. Methods Fluids, 39 (2002), 1073–1138.
doi: 10.1002/fld.346. |
[13] |
S. Gavrilyuk, The structure of pressure relaxation terms: The one-velocity case, Technical Report, EDF, (2014), H-I83-2014-0276-EN. |
[14] |
H. Ghazi, Modélisation d'écoulements compressibles avec transition de phase et prise en compte des états métastables, PhD thesis, 2018. |
[15] |
H. Ghazi, F. James and H. Mathis,
Vapour-liquid phase transition and metastability, ESAIM: Proceedings and Surveys, 66 (2019), 22-41.
doi: 10.1051/proc/201966002. |
[16] |
J. W. Gibbs, The Collected Works of J. Willard Gibbs, vol I: Thermodynamics, Yale University Press, 1948.
doi: 10.2307/3609900. |
[17] |
E. Godlewski and P. A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, 118 Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-0713-9. |
[18] |
P. Helluy, O. Hurisse and E. Le Coupanec, Verification of a two-phase flow code based on an homogeneous model, Int. J. Finite Vol., 24 (2015). |
[19] |
P. Helluy and H. Mathis,
Pressure laws and fast Legendre transform, Math. Models Methods Appl. Sci., 21 (2011), 745-775.
doi: 10.1142/S0218202511005209. |
[20] |
J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis, in Grundlehren Text Editions, Springer-Verlag, Berlin, 2001.
doi: 10.1007/978-3-642-56468-0. |
[21] |
O. Hurisse, Application of an homogeneous model to simulate the heating of two-phase flows, Int. J. Finite Vol., 11 (2014), 37 pp. |
[22] |
O. Hurisse, Numerical simulations of steady and unsteady two-phase flows using a homogeneous model, Comput. & Fluids, 152 (2017), 88–103, 2017.
doi: 10.1016/j.compfluid.2017.04.007. |
[23] |
O. Hurisse and L. Quibel, A homogeneous model for compressible three-phase flows involving heat and mass transfer, ESAIM: Proceedings and Surveys, (2019), 84 – 108.
doi: 10.1051/proc/201966005. |
[24] |
F. James and H. Mathis,
A relaxation model for liquid-vapor phase change with metastability, Commun. Math. Sci., 14 (2016), 2179-2214.
doi: 10.4310/CMS.2016.v14.n8.a4. |
[25] |
A. K. Kapila, R. Menikoff, J. B. Bdzil, S. F. Son and D. S. Stewart,
Two-phase modelling of DDT in granular materials: Reduced equations, Phys. Fluids, 13 (2001), 3002-3024.
|
[26] |
L. D. Landau and E. M. Lifshitz, Statistical Physics: V. 5. Course of Theoretical Physics, Pergamon Press, 1969. |
[27] |
B. J. Lee, E. F. Toro, C. E. Castro and N. Nikiforakis,
Adaptive Osher-type scheme for the Euler equations with highly nonlinear equations of state, J. Comput. Phys., 246 (2013), 165-183.
doi: 10.1016/j.jcp.2013.03.046. |
[28] |
R. G. Mortimer, Physical Chemistry, Academic Press Elsevier, 2008. |
[29] |
D. Y. Peng and D. B. Robinson,
A new two-constant equation of state, Industrial and Engineering Chemistry: Fundamentals, 15 (1976), 59-64.
doi: 10.1021/i160057a011. |
[30] |
R. T. Rockafellar, Convex Analysis, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. |
[31] |
R. Saurel, F. Petitpas and R. Abgrall,
Modelling phase transition in metastable liquids: Application to cavitating and flashing flows, J. Fluid Mech., 607 (2008), 313-350.
doi: 10.1017/S0022112008002061. |
[32] |
N. Shamsundarl and J. H. Lienhard,
Equations of state and spinodal lines–A review, Nuclear Engineering and Design, 141 (1993), 269-287.
doi: 10.1016/0029-5493(93)90106-J. |
[33] |
G. Soave,
Equilibrium constants from a modified Redlich-Kwong equation of state, Chemical Engineering Science, 27 (1972), 1197-1203.
|
[34] |
E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3$^{rd}$ edition, Springer-Verlag, Berlin, 2009.
doi: 10.1007/b79761. |
[35] |
A. Zein, M. Hantke and G. Warnecke,
Modeling phase transition for compressible two-phase flows applied to metastable liquids, J. Comp. Phys., 229 (2010), 1964-2998.
doi: 10.1016/j.jcp.2009.12.026. |
show all references
References:
[1] |
M. R. Baer and J. W. Nunziato,
A two phase mixture theory for the deflagration to detonation (ddt) transition in reactive granular materials, Int. J. Multiphase Flow, 12 (1986), 861-889.
doi: 10.1016/0301-9322(86)90033-9. |
[2] | |
[3] |
T. Barberon and P. Helluy,
Finite volume simulation of cavitating flows, Computers and Fluids, 34 (2005), 832-858.
doi: 10.1016/j.compfluid.2004.06.004. |
[4] |
J. Bartak,
A study of the rapid depressurization of hot water and the dynamics of vapour bubble generation in superheated water, Int. J. Multiph. Flow, 16 (1990), 789-98.
doi: 10.1016/0301-9322(90)90004-3. |
[5] |
H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2$^{nd}$ edition, Wiley and Sons, 1985.
doi: 10.1119/1.19071. |
[6] |
F. Caro, Modélisation et simulation numérique des transitions de phase liquide vapeur, PhD thesis, Ecole Polytechnique X, 2004. |
[7] |
M. De Lorenzo, Modelling and numerical simulation of metastable two-phase flows, PhD thesis, Université Paris-Saclay, 2018. |
[8] |
M. De Lorenzo, P. Lafon, M. Di Matteo, M. Pelanti, J.-M. Seynhaeve and Y. Bartosiewicz,
Homogeneous two-phase flow models and accurate steam-water table look-up method for fast transient simulations, Int. J. Multiph. Flow, 95 (2017), 199-219.
doi: 10.1016/j.ijmultiphaseflow.2017.06.001. |
[9] |
M. De Lorenzo, P. Lafon and M. Pelanti,
A hyperbolic phase-transition model with non-instantaneous EoS-independent relaxation procedures, J. Comput. Phys., 379 (2019), 279-308.
doi: 10.1016/j.jcp.2018.12.002. |
[10] |
G. Faccanoni, S. Kokh and G. Allaire,
Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium, ESAIM Math. Model. Numer. Anal., 46 (2012), 1029-1054.
doi: 10.1051/m2an/2011069. |
[11] |
S. Fechter, C.-D. Munz, C. Rohde and C. Zeiler,
A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension, J. Comput. Phys., 336 (2017), 347-374.
doi: 10.1016/j.jcp.2017.02.001. |
[12] |
T. Gallouët, J.-M. Hérard and N. Seguin, Some recent finite volume schemes to compute Euler equations using real gas EOS, Internat. J. Numer. Methods Fluids, 39 (2002), 1073–1138.
doi: 10.1002/fld.346. |
[13] |
S. Gavrilyuk, The structure of pressure relaxation terms: The one-velocity case, Technical Report, EDF, (2014), H-I83-2014-0276-EN. |
[14] |
H. Ghazi, Modélisation d'écoulements compressibles avec transition de phase et prise en compte des états métastables, PhD thesis, 2018. |
[15] |
H. Ghazi, F. James and H. Mathis,
Vapour-liquid phase transition and metastability, ESAIM: Proceedings and Surveys, 66 (2019), 22-41.
doi: 10.1051/proc/201966002. |
[16] |
J. W. Gibbs, The Collected Works of J. Willard Gibbs, vol I: Thermodynamics, Yale University Press, 1948.
doi: 10.2307/3609900. |
[17] |
E. Godlewski and P. A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, 118 Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-0713-9. |
[18] |
P. Helluy, O. Hurisse and E. Le Coupanec, Verification of a two-phase flow code based on an homogeneous model, Int. J. Finite Vol., 24 (2015). |
[19] |
P. Helluy and H. Mathis,
Pressure laws and fast Legendre transform, Math. Models Methods Appl. Sci., 21 (2011), 745-775.
doi: 10.1142/S0218202511005209. |
[20] |
J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis, in Grundlehren Text Editions, Springer-Verlag, Berlin, 2001.
doi: 10.1007/978-3-642-56468-0. |
[21] |
O. Hurisse, Application of an homogeneous model to simulate the heating of two-phase flows, Int. J. Finite Vol., 11 (2014), 37 pp. |
[22] |
O. Hurisse, Numerical simulations of steady and unsteady two-phase flows using a homogeneous model, Comput. & Fluids, 152 (2017), 88–103, 2017.
doi: 10.1016/j.compfluid.2017.04.007. |
[23] |
O. Hurisse and L. Quibel, A homogeneous model for compressible three-phase flows involving heat and mass transfer, ESAIM: Proceedings and Surveys, (2019), 84 – 108.
doi: 10.1051/proc/201966005. |
[24] |
F. James and H. Mathis,
A relaxation model for liquid-vapor phase change with metastability, Commun. Math. Sci., 14 (2016), 2179-2214.
doi: 10.4310/CMS.2016.v14.n8.a4. |
[25] |
A. K. Kapila, R. Menikoff, J. B. Bdzil, S. F. Son and D. S. Stewart,
Two-phase modelling of DDT in granular materials: Reduced equations, Phys. Fluids, 13 (2001), 3002-3024.
|
[26] |
L. D. Landau and E. M. Lifshitz, Statistical Physics: V. 5. Course of Theoretical Physics, Pergamon Press, 1969. |
[27] |
B. J. Lee, E. F. Toro, C. E. Castro and N. Nikiforakis,
Adaptive Osher-type scheme for the Euler equations with highly nonlinear equations of state, J. Comput. Phys., 246 (2013), 165-183.
doi: 10.1016/j.jcp.2013.03.046. |
[28] |
R. G. Mortimer, Physical Chemistry, Academic Press Elsevier, 2008. |
[29] |
D. Y. Peng and D. B. Robinson,
A new two-constant equation of state, Industrial and Engineering Chemistry: Fundamentals, 15 (1976), 59-64.
doi: 10.1021/i160057a011. |
[30] |
R. T. Rockafellar, Convex Analysis, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. |
[31] |
R. Saurel, F. Petitpas and R. Abgrall,
Modelling phase transition in metastable liquids: Application to cavitating and flashing flows, J. Fluid Mech., 607 (2008), 313-350.
doi: 10.1017/S0022112008002061. |
[32] |
N. Shamsundarl and J. H. Lienhard,
Equations of state and spinodal lines–A review, Nuclear Engineering and Design, 141 (1993), 269-287.
doi: 10.1016/0029-5493(93)90106-J. |
[33] |
G. Soave,
Equilibrium constants from a modified Redlich-Kwong equation of state, Chemical Engineering Science, 27 (1972), 1197-1203.
|
[34] |
E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3$^{rd}$ edition, Springer-Verlag, Berlin, 2009.
doi: 10.1007/b79761. |
[35] |
A. Zein, M. Hantke and G. Warnecke,
Modeling phase transition for compressible two-phase flows applied to metastable liquids, J. Comp. Phys., 229 (2010), 1964-2998.
doi: 10.1016/j.jcp.2009.12.026. |



















[1] |
Qiaolin He, Chang Liu, Xiaoding Shi. Numerical study of phase transition in van der Waals fluid. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4519-4540. doi: 10.3934/dcdsb.2018174 |
[2] |
Shu-Yi Zhang. Existence of multidimensional non-isothermal phase transitions in a steady van der Waals flow. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2221-2239. doi: 10.3934/dcds.2013.33.2221 |
[3] |
Da-Peng Li. Phase transition of oscillators and travelling waves in a class of relaxation systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2601-2614. doi: 10.3934/dcdsb.2016063 |
[4] |
Zhaosheng Feng. Duffing-van der Pol-type oscillator systems. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1231-1257. doi: 10.3934/dcdss.2014.7.1231 |
[5] |
Xiaoqin P. Wu, Liancheng Wang. Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 503-516. doi: 10.3934/dcdsb.2010.13.503 |
[6] |
Yunfeng Jia, Yi Li, Jianhua Wu. Qualitative analysis on positive steady-states for an autocatalytic reaction model in thermodynamics. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4785-4813. doi: 10.3934/dcds.2017206 |
[7] |
Antonio DeSimone, Martin Kružík. Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks and Heterogeneous Media, 2013, 8 (2) : 481-499. doi: 10.3934/nhm.2013.8.481 |
[8] |
Vaughn Climenhaga. Multifractal formalism derived from thermodynamics for general dynamical systems. Electronic Research Announcements, 2010, 17: 1-11. doi: 10.3934/era.2010.17.1 |
[9] |
Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3459-3478. doi: 10.3934/dcdss.2021018 |
[10] |
Luciano Pandolfi. Joint identification via deconvolution of the flux and energy relaxation kernels of the Gurtin-Pipkin model in thermodynamics with memory. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1589-1599. doi: 10.3934/dcdss.2020090 |
[11] |
Jean-Pierre Eckmann, C. Eugene Wayne. Breathers as metastable states for the discrete NLS equation. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6091-6103. doi: 10.3934/dcds.2018136 |
[12] |
I-Liang Chern, Chun-Hsiung Hsia. Dynamic phase transition for binary systems in cylindrical geometry. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 173-188. doi: 10.3934/dcdsb.2011.16.173 |
[13] |
Jun Yang. Coexistence phenomenon of concentration and transition of an inhomogeneous phase transition model on surfaces. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 965-994. doi: 10.3934/dcds.2011.30.965 |
[14] |
Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119 |
[15] |
Mauro Garavello. Boundary value problem for a phase transition model. Networks and Heterogeneous Media, 2016, 11 (1) : 89-105. doi: 10.3934/nhm.2016.11.89 |
[16] |
Mauro Garavello, Francesca Marcellini. The Riemann Problem at a Junction for a Phase Transition Traffic Model. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5191-5209. doi: 10.3934/dcds.2017225 |
[17] |
Pierluigi Colli, Antonio Segatti. Uniform attractors for a phase transition model coupling momentum balance and phase dynamics. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 909-932. doi: 10.3934/dcds.2008.22.909 |
[18] |
Martin Burger, Peter Alexander Markowich, Jan-Frederik Pietschmann. Continuous limit of a crowd motion and herding model: Analysis and numerical simulations. Kinetic and Related Models, 2011, 4 (4) : 1025-1047. doi: 10.3934/krm.2011.4.1025 |
[19] |
Antonio Algaba, Estanislao Gamero, Cristóbal García. The reversibility problem for quasi-homogeneous dynamical systems. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3225-3236. doi: 10.3934/dcds.2013.33.3225 |
[20] |
Boris Anicet Guimfack, Conrad Bertrand Tabi, Alidou Mohamadou, Timoléon Crépin Kofané. Stochastic dynamics of the FitzHugh-Nagumo neuron model through a modified Van der Pol equation with fractional-order term and Gaussian white noise excitation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2229-2243. doi: 10.3934/dcdss.2020397 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]