May  2021, 26(5): 2411-2428. doi: 10.3934/dcdsb.2020184

A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems

1. 

School of Mathematics and Statistics, and Key Laboratory of Applied Mathematics and Complex Systems (Gansu Province), Lanzhou University, Lanzhou 730000, China

2. 

Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, USA

* Corresponding author: Lunji Song

Received  November 2019 Revised  February 2020 Published  June 2020

In this article, we propose a new over-penalized weak Galerkin (OPWG) method with a stabilizer for second-order elliptic problems. This method employs double-valued functions on interior edges of elements instead of single-valued ones and elements $ (\mathbb{P}_{k}, \mathbb{P}_{k}, [\mathbb{P}_{k-1}]^{d}) $, or $ (\mathbb{P}_{k}, \mathbb{P}_{k-1}, [\mathbb{P}_{k-1}]^{d}) $, with dimensions of space $ d = 2, \; 3 $. The method is absolutely stable with a constant penalty parameter, which is independent of mesh size and shape-regularity. We prove that for quasi-uniform triangulations, condition numbers of the stiffness matrices arising from the OPWG method are $ O(h^{-\beta_{0}(d-1)-1}) $, $ \beta_{0} $ being the penalty exponent. Therefore we introduce a new mini-block diagonal preconditioner, which is proven to be theoretically and numerically effective in reducing the condition numbers of stiffness matrices to the magnitude of $ O(h^{-2}) $. Optimal error estimates in a discrete $ H^1 $-norm and $ L^2 $-norm are established, from which the optimal penalty exponent can be easily chosen. Several numerical examples are presented to demonstrate flexibility, effectiveness and reliability of the new method.

Citation: Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184
References:
[1]

D. N. ArnoldF. BrezziB. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749-1779.  doi: 10.1137/S0036142901384162.  Google Scholar

[2]

F. BrezziJ. Douglas Jr. and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), 217-235.  doi: 10.1007/BF01389710.  Google Scholar

[3]

B. Li and X. Xie, A two-level algorithm for the weak Galerkin discretization of diffusion problems, J. Comput. Appl. Math., 287 (2015), 179-195.  doi: 10.1016/j.cam.2015.03.043.  Google Scholar

[4]

K. LiuL. Song and S. Zhou, An over-penalized weak Galerkin method for second-order elliptic problems, J. Comput. Math., 36 (2018), 866-880.  doi: 10.4208/jcm.1705-m2016-0744.  Google Scholar

[5]

L. MuJ. WangY. Wang and X. Ye, A computational study of the weak Galerkin method for second-order elliptic equations, Numer. Algor., 63 (2012), 753-777.  doi: 10.1007/s11075-012-9651-1.  Google Scholar

[6]

L. MuJ. WangG. WeiX. Ye and S. Zhao, Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250 (2013), 106-125.  doi: 10.1016/j.jcp.2013.04.042.  Google Scholar

[7]

L. MuJ. Wang and X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal., 35 (2015), 1228-1255.  doi: 10.1093/imanum/dru026.  Google Scholar

[8]

L. MuJ. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduction, J. Comput. Appl. Math., 285 (2015), 45-58.  doi: 10.1016/j.cam.2015.02.001.  Google Scholar

[9]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31-53.   Google Scholar

[10]

L. MuJ. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[11]

A. Quarteroni and V. Alberto, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, 23, Springer, Berlin, Heidelberg, 1994. doi: 10.1007/978-3-540-85268-1.  Google Scholar

[12]

P.-A. Raviart and J.-M. Thomas, A mixed finite element method for 2-nd order elliptic problems, in Galligani I., Magenes E. (eds) Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, vol 606, Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/BFb0064470.  Google Scholar

[13]

B. Riviere, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2008. doi: doi.org/10.1137/1.9780898717440.  Google Scholar

[14]

L. SongK. Liu and S. Zhao, A weak Galerkin method with an over-relaxed stabilization for low regularity elliptic problems, J. Sci. Comput., 71 (2017), 195-218.  doi: 10.1007/s10915-016-0296-4.  Google Scholar

[15]

L. SongS. Zhao and K. Liu, A relaxed weak Galerkin method for elliptic interface problems with low regularity, Appl. Numer. Math., 128 (2018), 65-80.  doi: 10.1016/j.apnum.2018.01.021.  Google Scholar

[16]

C. Wang and J. Wang, An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes, Comput. Math. Appl., 68 (2014), 2314-2330.  doi: 10.1016/j.camwa.2014.03.021.  Google Scholar

[17]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[18]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[19]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-016-9471-2.  Google Scholar

[20]

Q. ZhaiX. YeR. Wang and R. Zhang, A weak Galerkin finite element scheme with boundary continuity for second-order elliptic problems, Comput. Math. Appl., 74 (2017), 2243-2252.  doi: 10.1016/j.camwa.2017.07.009.  Google Scholar

show all references

References:
[1]

D. N. ArnoldF. BrezziB. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749-1779.  doi: 10.1137/S0036142901384162.  Google Scholar

[2]

F. BrezziJ. Douglas Jr. and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), 217-235.  doi: 10.1007/BF01389710.  Google Scholar

[3]

B. Li and X. Xie, A two-level algorithm for the weak Galerkin discretization of diffusion problems, J. Comput. Appl. Math., 287 (2015), 179-195.  doi: 10.1016/j.cam.2015.03.043.  Google Scholar

[4]

K. LiuL. Song and S. Zhou, An over-penalized weak Galerkin method for second-order elliptic problems, J. Comput. Math., 36 (2018), 866-880.  doi: 10.4208/jcm.1705-m2016-0744.  Google Scholar

[5]

L. MuJ. WangY. Wang and X. Ye, A computational study of the weak Galerkin method for second-order elliptic equations, Numer. Algor., 63 (2012), 753-777.  doi: 10.1007/s11075-012-9651-1.  Google Scholar

[6]

L. MuJ. WangG. WeiX. Ye and S. Zhao, Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250 (2013), 106-125.  doi: 10.1016/j.jcp.2013.04.042.  Google Scholar

[7]

L. MuJ. Wang and X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal., 35 (2015), 1228-1255.  doi: 10.1093/imanum/dru026.  Google Scholar

[8]

L. MuJ. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduction, J. Comput. Appl. Math., 285 (2015), 45-58.  doi: 10.1016/j.cam.2015.02.001.  Google Scholar

[9]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31-53.   Google Scholar

[10]

L. MuJ. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[11]

A. Quarteroni and V. Alberto, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, 23, Springer, Berlin, Heidelberg, 1994. doi: 10.1007/978-3-540-85268-1.  Google Scholar

[12]

P.-A. Raviart and J.-M. Thomas, A mixed finite element method for 2-nd order elliptic problems, in Galligani I., Magenes E. (eds) Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, vol 606, Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/BFb0064470.  Google Scholar

[13]

B. Riviere, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2008. doi: doi.org/10.1137/1.9780898717440.  Google Scholar

[14]

L. SongK. Liu and S. Zhao, A weak Galerkin method with an over-relaxed stabilization for low regularity elliptic problems, J. Sci. Comput., 71 (2017), 195-218.  doi: 10.1007/s10915-016-0296-4.  Google Scholar

[15]

L. SongS. Zhao and K. Liu, A relaxed weak Galerkin method for elliptic interface problems with low regularity, Appl. Numer. Math., 128 (2018), 65-80.  doi: 10.1016/j.apnum.2018.01.021.  Google Scholar

[16]

C. Wang and J. Wang, An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes, Comput. Math. Appl., 68 (2014), 2314-2330.  doi: 10.1016/j.camwa.2014.03.021.  Google Scholar

[17]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[18]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[19]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-016-9471-2.  Google Scholar

[20]

Q. ZhaiX. YeR. Wang and R. Zhang, A weak Galerkin finite element scheme with boundary continuity for second-order elliptic problems, Comput. Math. Appl., 74 (2017), 2243-2252.  doi: 10.1016/j.camwa.2017.07.009.  Google Scholar

Figure 1.  Initial mesh (Left) and the OPWG ($ \beta_{0} = 3 $) solution on the finest mesh (Right) for Example 2
Figure 2.  Convergence rates of the OPWG ($ \beta_{0} = 3 $) solutions against degree of freedoms for different values of $ \alpha $ in Example 2. (Left) $ \alpha = 0.5 $; (Right) $ \alpha = 0.25 $
Table 1.  WG method with element $ (\mathbb{P}_k, \mathbb{P}_{k}, \mathbb{P}_{k-1}^2) $ for Example 1
$ h $ $ k=1 $ $ k=2 $
$ ||| e_{h}||| $ $ \|e_{0}\| $ $ ||| e_{h}||| $ $ \|e_{0}\| $
1/8 9.9173e-01 5.3131e-02 7.8508e-02 3.2464e-03
1/16 4.9588e-01 1.3272e-02 1.9677e-02 4.0611e-04
1/32 2.4793e-01 3.3169e-03 4.9226e-03 5.0761e-05
1/64 1.2396e-01 8.2914e-04 1.2309e-03 6.3445e-06
Rate. 1.0001 2.0001 1.9997 3.0001
$ h $ $ k=1 $ $ k=2 $
$ ||| e_{h}||| $ $ \|e_{0}\| $ $ ||| e_{h}||| $ $ \|e_{0}\| $
1/8 9.9173e-01 5.3131e-02 7.8508e-02 3.2464e-03
1/16 4.9588e-01 1.3272e-02 1.9677e-02 4.0611e-04
1/32 2.4793e-01 3.3169e-03 4.9226e-03 5.0761e-05
1/64 1.2396e-01 8.2914e-04 1.2309e-03 6.3445e-06
Rate. 1.0001 2.0001 1.9997 3.0001
Table 2.  OPWG with $ (\mathbb{P}_1, \mathbb{P}_1, \mathbb{P}_{0}^{2}) $ and $ \beta_0 = 1, 2, 3, 4 $ for Example 1
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ $ ||| e_h ||| $ $ \|e_0\| $
$ \beta_0=1 $ $ \beta_0=2 $
$ 1/8 $ 1.3258e+00 7.4931e-02 1.0550e+00 5.9839e-02
$ 1/16 $ 1.0306e+00 3.4203e-02 5.6097e-01 1.5700e-02
$ 1/32 $ 9.4663e-01 2.5074e-02 3.1098e-01 4.3112e-03
$ 1/64 $ 9.2663e-01 2.3053e-02 1.8215e-01 1.2815e-03
Rate. 0.0308 0.1212 0.7717 1.7503
$ \beta_0=3 $ $ \beta_0=4 $
$ 1/8 $ 1.0019e+00 5.7508e-02 9.9304e-01 5.7135e-02
$ 1/16 $ 5.0137e-01 1.4381e-02 4.9628e-01 1.4278e-02
$ 1/32 $ 2.5075e-01 3.5954e-03 2.4804e-01 3.5682e-03
$ 1/64 $ 1.2539e-01 8.9887e-04 1.2399e-01 8.9191e-04
Rate. 0.9998 2. 1.0003 2.0002
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ $ ||| e_h ||| $ $ \|e_0\| $
$ \beta_0=1 $ $ \beta_0=2 $
$ 1/8 $ 1.3258e+00 7.4931e-02 1.0550e+00 5.9839e-02
$ 1/16 $ 1.0306e+00 3.4203e-02 5.6097e-01 1.5700e-02
$ 1/32 $ 9.4663e-01 2.5074e-02 3.1098e-01 4.3112e-03
$ 1/64 $ 9.2663e-01 2.3053e-02 1.8215e-01 1.2815e-03
Rate. 0.0308 0.1212 0.7717 1.7503
$ \beta_0=3 $ $ \beta_0=4 $
$ 1/8 $ 1.0019e+00 5.7508e-02 9.9304e-01 5.7135e-02
$ 1/16 $ 5.0137e-01 1.4381e-02 4.9628e-01 1.4278e-02
$ 1/32 $ 2.5075e-01 3.5954e-03 2.4804e-01 3.5682e-03
$ 1/64 $ 1.2539e-01 8.9887e-04 1.2399e-01 8.9191e-04
Rate. 0.9998 2. 1.0003 2.0002
Table 3.  OPWG with $ (\mathbb{P}_2, \mathbb{P}_2, \mathbb{P}_{1}^{2}) $ and $ \beta_0 = 2, 3, 4, 5 $ for Example 1
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ $ ||| e_h ||| $ $ \|e_0\| $
$ \beta_0=2 $ $ \beta_0=3 $
$ 1/8 $ 1.7917e+00 1.0256e-01 8.4595e-01 2.0487e-02
$ 1/16 $ 1.4060e+00 5.7784e-02 4.4264e-01 5.3334e-03
$ 1/32 $ 1.0580e+00 3.0997e-02 2.2464e-01 1.3530e-03
$ 1/64 $ 7.7468e-01 1.6118e-02 1.1291e-01 3.4023e-04
Rate. 0.4497 0.9435 0.9924 1.9916
$ \beta_0=4 $ $ \beta_0=5 $
$ 1/8 $ 3.6348e-01 4.6229e-03 1.6594e-01 3.2492e-03
$ 1/16 $ 1.2933e-01 5.9131e-04 4.1839e-02 4.0604e-04
$ 1/32 $ 4.5730e-02 7.4938e-05 1.0494e-02 5.0757e-05
$ 1/64 $ 1.6162e-02 9.4394e-06 2.6274e-03 6.3443e-06
Rate. 1.5005 2.9889 1.9979 3.0001
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ $ ||| e_h ||| $ $ \|e_0\| $
$ \beta_0=2 $ $ \beta_0=3 $
$ 1/8 $ 1.7917e+00 1.0256e-01 8.4595e-01 2.0487e-02
$ 1/16 $ 1.4060e+00 5.7784e-02 4.4264e-01 5.3334e-03
$ 1/32 $ 1.0580e+00 3.0997e-02 2.2464e-01 1.3530e-03
$ 1/64 $ 7.7468e-01 1.6118e-02 1.1291e-01 3.4023e-04
Rate. 0.4497 0.9435 0.9924 1.9916
$ \beta_0=4 $ $ \beta_0=5 $
$ 1/8 $ 3.6348e-01 4.6229e-03 1.6594e-01 3.2492e-03
$ 1/16 $ 1.2933e-01 5.9131e-04 4.1839e-02 4.0604e-04
$ 1/32 $ 4.5730e-02 7.4938e-05 1.0494e-02 5.0757e-05
$ 1/64 $ 1.6162e-02 9.4394e-06 2.6274e-03 6.3443e-06
Rate. 1.5005 2.9889 1.9979 3.0001
Table 4.  Comparison of condition number with optimal penalty parameters
$ h $ Without preconditioning Block-diagonal preconditioning
$ k=1, \beta_{0}=3 $ $ k=2, \beta_{0}=5 $ $ k=1, \beta_{0}=3 $ $ k=2, \beta_{0}=5 $
1/4 1.8272e+04 2.1075e+04 2.6265e+02 4.3079e+04
1/8 1.6957e+05 6.9533e+05 1.0135e+03 1.9257e+05
1/16 2.1585e+06 3.4759e+07 4.0481e+03 8.0866e+05
1/32 3.2471e+07 2.0653e+09 1.6228e+04 3.3427e+06
1/64 5.1218e+08 1.2974e+11 6.4995e+04 1.3570e+07
Order -3.9794 -5.9731 -2.0018 -2.0213
$ h $ Without preconditioning Block-diagonal preconditioning
$ k=1, \beta_{0}=3 $ $ k=2, \beta_{0}=5 $ $ k=1, \beta_{0}=3 $ $ k=2, \beta_{0}=5 $
1/4 1.8272e+04 2.1075e+04 2.6265e+02 4.3079e+04
1/8 1.6957e+05 6.9533e+05 1.0135e+03 1.9257e+05
1/16 2.1585e+06 3.4759e+07 4.0481e+03 8.0866e+05
1/32 3.2471e+07 2.0653e+09 1.6228e+04 3.3427e+06
1/64 5.1218e+08 1.2974e+11 6.4995e+04 1.3570e+07
Order -3.9794 -5.9731 -2.0018 -2.0213
Table 5.  Errors and condition numbers for Example 1 with $ (\mathbb{P}_1, \mathbb{P}_0, \mathbb{P}_{0}^{2}) $ and $ \beta_0 = 3 $
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ Cond. Pre. Cond.
$ 1/8 $ 1.5226e+00 8.7459e-02 6.6551e+03 2.1055e+03
$ 1/16 $ 7.7405e-01 2.2035e-02 8.1739e+04 7.9132e+03
$ 1/32 $ 3.8921e-01 5.5253e-03 1.2109e+06 3.1176e+04
$ 1/64 $ 1.9499e-01 1.3832e-03 1.9007e+07 1.2425e+05
Rate. 0.9971 1.9980 -3.9724 -1.9947
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ Cond. Pre. Cond.
$ 1/8 $ 1.5226e+00 8.7459e-02 6.6551e+03 2.1055e+03
$ 1/16 $ 7.7405e-01 2.2035e-02 8.1739e+04 7.9132e+03
$ 1/32 $ 3.8921e-01 5.5253e-03 1.2109e+06 3.1176e+04
$ 1/64 $ 1.9499e-01 1.3832e-03 1.9007e+07 1.2425e+05
Rate. 0.9971 1.9980 -3.9724 -1.9947
Table 6.  Errors and condition numbers for Example 1 with $ (\mathbb{P}_2, \mathbb{P}_1, \mathbb{P}_{1}^{2}) $ and $ \beta_0 = 5 $
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ Cond. Pre. Cond.
$ 1/8 $ 1.6622e-01 3.3354e-03 3.5419e+05 1.0229e+05
$ 1/16 $ 4.1912e-02 4.1731e-04 1.9810e+07 4.2176e+05
$ 1/32 $ 1.0513e-02 5.2184e-05 1.2227e+09 1.7166e+06
$ 1/64 $ 2.6321e-03 6.5231e-06 7.7586e+10 6.9742e+06
Rate. 1.9979 3.0000 -5.9877 -2.0225
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ Cond. Pre. Cond.
$ 1/8 $ 1.6622e-01 3.3354e-03 3.5419e+05 1.0229e+05
$ 1/16 $ 4.1912e-02 4.1731e-04 1.9810e+07 4.2176e+05
$ 1/32 $ 1.0513e-02 5.2184e-05 1.2227e+09 1.7166e+06
$ 1/64 $ 2.6321e-03 6.5231e-06 7.7586e+10 6.9742e+06
Rate. 1.9979 3.0000 -5.9877 -2.0225
Table 7.  OPWG with $ (\mathbb{P}_1, \mathbb{P}_1, \mathbb{P}_{0}^{2}) $ and optimal penalty parameter for Example 2
dof. $ \alpha=0.5 $ $ \alpha=0.25 $ Condition Number
$ ||| e_h ||| $ $ \|e_{0}\| $ $ ||| e_h ||| $ $ \|e_{0}\| $ Cond. Pre. Cond.
2.0880e+3 4.2303e-1 7.0060e-2 9.6614e-1 7.3906e-2 1.7335e+6 1.1357e+3
8.3520e+3 2.7461e-1 1.8365e-2 7.8292e-1 2.2116e-2 2.4882e+7 4.5578e+3
3.3408e+4 1.8503e-1 4.7471e-3 6.4655e-1 7.3419e-3 3.8905e+8 1.8270e+4
1.3363e+5 1.3025e-1 1.2371e-3 5.5838e-1 2.8274e-3 6.1854e+9 7.3140e+4
5.3453e+5 9.2125e-2 3.2954e-4 4.6994e-1 1.1394e-3 9.8828e+10 2.9267e+5
dof. $ \alpha=0.5 $ $ \alpha=0.25 $ Condition Number
$ ||| e_h ||| $ $ \|e_{0}\| $ $ ||| e_h ||| $ $ \|e_{0}\| $ Cond. Pre. Cond.
2.0880e+3 4.2303e-1 7.0060e-2 9.6614e-1 7.3906e-2 1.7335e+6 1.1357e+3
8.3520e+3 2.7461e-1 1.8365e-2 7.8292e-1 2.2116e-2 2.4882e+7 4.5578e+3
3.3408e+4 1.8503e-1 4.7471e-3 6.4655e-1 7.3419e-3 3.8905e+8 1.8270e+4
1.3363e+5 1.3025e-1 1.2371e-3 5.5838e-1 2.8274e-3 6.1854e+9 7.3140e+4
5.3453e+5 9.2125e-2 3.2954e-4 4.6994e-1 1.1394e-3 9.8828e+10 2.9267e+5
[1]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[2]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[3]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[4]

Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021017

[5]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[6]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[7]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[8]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[9]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[10]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[11]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[12]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[13]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[14]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[15]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[16]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[17]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[18]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[19]

Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012

[20]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (61)
  • HTML views (293)
  • Cited by (0)

Other articles
by authors

[Back to Top]