doi: 10.3934/dcdsb.2020184

A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems

1. 

School of Mathematics and Statistics, and Key Laboratory of Applied Mathematics and Complex Systems (Gansu Province), Lanzhou University, Lanzhou 730000, China

2. 

Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, USA

* Corresponding author: Lunji Song

Received  November 2019 Revised  February 2020 Published  June 2020

In this article, we propose a new over-penalized weak Galerkin (OPWG) method with a stabilizer for second-order elliptic problems. This method employs double-valued functions on interior edges of elements instead of single-valued ones and elements $ (\mathbb{P}_{k}, \mathbb{P}_{k}, [\mathbb{P}_{k-1}]^{d}) $, or $ (\mathbb{P}_{k}, \mathbb{P}_{k-1}, [\mathbb{P}_{k-1}]^{d}) $, with dimensions of space $ d = 2, \; 3 $. The method is absolutely stable with a constant penalty parameter, which is independent of mesh size and shape-regularity. We prove that for quasi-uniform triangulations, condition numbers of the stiffness matrices arising from the OPWG method are $ O(h^{-\beta_{0}(d-1)-1}) $, $ \beta_{0} $ being the penalty exponent. Therefore we introduce a new mini-block diagonal preconditioner, which is proven to be theoretically and numerically effective in reducing the condition numbers of stiffness matrices to the magnitude of $ O(h^{-2}) $. Optimal error estimates in a discrete $ H^1 $-norm and $ L^2 $-norm are established, from which the optimal penalty exponent can be easily chosen. Several numerical examples are presented to demonstrate flexibility, effectiveness and reliability of the new method.

Citation: Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020184
References:
[1]

D. N. ArnoldF. BrezziB. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749-1779.  doi: 10.1137/S0036142901384162.  Google Scholar

[2]

F. BrezziJ. Douglas Jr. and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), 217-235.  doi: 10.1007/BF01389710.  Google Scholar

[3]

B. Li and X. Xie, A two-level algorithm for the weak Galerkin discretization of diffusion problems, J. Comput. Appl. Math., 287 (2015), 179-195.  doi: 10.1016/j.cam.2015.03.043.  Google Scholar

[4]

K. LiuL. Song and S. Zhou, An over-penalized weak Galerkin method for second-order elliptic problems, J. Comput. Math., 36 (2018), 866-880.  doi: 10.4208/jcm.1705-m2016-0744.  Google Scholar

[5]

L. MuJ. WangY. Wang and X. Ye, A computational study of the weak Galerkin method for second-order elliptic equations, Numer. Algor., 63 (2012), 753-777.  doi: 10.1007/s11075-012-9651-1.  Google Scholar

[6]

L. MuJ. WangG. WeiX. Ye and S. Zhao, Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250 (2013), 106-125.  doi: 10.1016/j.jcp.2013.04.042.  Google Scholar

[7]

L. MuJ. Wang and X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal., 35 (2015), 1228-1255.  doi: 10.1093/imanum/dru026.  Google Scholar

[8]

L. MuJ. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduction, J. Comput. Appl. Math., 285 (2015), 45-58.  doi: 10.1016/j.cam.2015.02.001.  Google Scholar

[9]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31-53.   Google Scholar

[10]

L. MuJ. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[11]

A. Quarteroni and V. Alberto, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, 23, Springer, Berlin, Heidelberg, 1994. doi: 10.1007/978-3-540-85268-1.  Google Scholar

[12]

P.-A. Raviart and J.-M. Thomas, A mixed finite element method for 2-nd order elliptic problems, in Galligani I., Magenes E. (eds) Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, vol 606, Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/BFb0064470.  Google Scholar

[13]

B. Riviere, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2008. doi: doi.org/10.1137/1.9780898717440.  Google Scholar

[14]

L. SongK. Liu and S. Zhao, A weak Galerkin method with an over-relaxed stabilization for low regularity elliptic problems, J. Sci. Comput., 71 (2017), 195-218.  doi: 10.1007/s10915-016-0296-4.  Google Scholar

[15]

L. SongS. Zhao and K. Liu, A relaxed weak Galerkin method for elliptic interface problems with low regularity, Appl. Numer. Math., 128 (2018), 65-80.  doi: 10.1016/j.apnum.2018.01.021.  Google Scholar

[16]

C. Wang and J. Wang, An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes, Comput. Math. Appl., 68 (2014), 2314-2330.  doi: 10.1016/j.camwa.2014.03.021.  Google Scholar

[17]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[18]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[19]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-016-9471-2.  Google Scholar

[20]

Q. ZhaiX. YeR. Wang and R. Zhang, A weak Galerkin finite element scheme with boundary continuity for second-order elliptic problems, Comput. Math. Appl., 74 (2017), 2243-2252.  doi: 10.1016/j.camwa.2017.07.009.  Google Scholar

show all references

References:
[1]

D. N. ArnoldF. BrezziB. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749-1779.  doi: 10.1137/S0036142901384162.  Google Scholar

[2]

F. BrezziJ. Douglas Jr. and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), 217-235.  doi: 10.1007/BF01389710.  Google Scholar

[3]

B. Li and X. Xie, A two-level algorithm for the weak Galerkin discretization of diffusion problems, J. Comput. Appl. Math., 287 (2015), 179-195.  doi: 10.1016/j.cam.2015.03.043.  Google Scholar

[4]

K. LiuL. Song and S. Zhou, An over-penalized weak Galerkin method for second-order elliptic problems, J. Comput. Math., 36 (2018), 866-880.  doi: 10.4208/jcm.1705-m2016-0744.  Google Scholar

[5]

L. MuJ. WangY. Wang and X. Ye, A computational study of the weak Galerkin method for second-order elliptic equations, Numer. Algor., 63 (2012), 753-777.  doi: 10.1007/s11075-012-9651-1.  Google Scholar

[6]

L. MuJ. WangG. WeiX. Ye and S. Zhao, Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250 (2013), 106-125.  doi: 10.1016/j.jcp.2013.04.042.  Google Scholar

[7]

L. MuJ. Wang and X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal., 35 (2015), 1228-1255.  doi: 10.1093/imanum/dru026.  Google Scholar

[8]

L. MuJ. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduction, J. Comput. Appl. Math., 285 (2015), 45-58.  doi: 10.1016/j.cam.2015.02.001.  Google Scholar

[9]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31-53.   Google Scholar

[10]

L. MuJ. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[11]

A. Quarteroni and V. Alberto, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, 23, Springer, Berlin, Heidelberg, 1994. doi: 10.1007/978-3-540-85268-1.  Google Scholar

[12]

P.-A. Raviart and J.-M. Thomas, A mixed finite element method for 2-nd order elliptic problems, in Galligani I., Magenes E. (eds) Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, vol 606, Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/BFb0064470.  Google Scholar

[13]

B. Riviere, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2008. doi: doi.org/10.1137/1.9780898717440.  Google Scholar

[14]

L. SongK. Liu and S. Zhao, A weak Galerkin method with an over-relaxed stabilization for low regularity elliptic problems, J. Sci. Comput., 71 (2017), 195-218.  doi: 10.1007/s10915-016-0296-4.  Google Scholar

[15]

L. SongS. Zhao and K. Liu, A relaxed weak Galerkin method for elliptic interface problems with low regularity, Appl. Numer. Math., 128 (2018), 65-80.  doi: 10.1016/j.apnum.2018.01.021.  Google Scholar

[16]

C. Wang and J. Wang, An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes, Comput. Math. Appl., 68 (2014), 2314-2330.  doi: 10.1016/j.camwa.2014.03.021.  Google Scholar

[17]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[18]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[19]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-016-9471-2.  Google Scholar

[20]

Q. ZhaiX. YeR. Wang and R. Zhang, A weak Galerkin finite element scheme with boundary continuity for second-order elliptic problems, Comput. Math. Appl., 74 (2017), 2243-2252.  doi: 10.1016/j.camwa.2017.07.009.  Google Scholar

Figure 1.  Initial mesh (Left) and the OPWG ($ \beta_{0} = 3 $) solution on the finest mesh (Right) for Example 2
Figure 2.  Convergence rates of the OPWG ($ \beta_{0} = 3 $) solutions against degree of freedoms for different values of $ \alpha $ in Example 2. (Left) $ \alpha = 0.5 $; (Right) $ \alpha = 0.25 $
Table 1.  WG method with element $ (\mathbb{P}_k, \mathbb{P}_{k}, \mathbb{P}_{k-1}^2) $ for Example 1
$ h $ $ k=1 $ $ k=2 $
$ ||| e_{h}||| $ $ \|e_{0}\| $ $ ||| e_{h}||| $ $ \|e_{0}\| $
1/8 9.9173e-01 5.3131e-02 7.8508e-02 3.2464e-03
1/16 4.9588e-01 1.3272e-02 1.9677e-02 4.0611e-04
1/32 2.4793e-01 3.3169e-03 4.9226e-03 5.0761e-05
1/64 1.2396e-01 8.2914e-04 1.2309e-03 6.3445e-06
Rate. 1.0001 2.0001 1.9997 3.0001
$ h $ $ k=1 $ $ k=2 $
$ ||| e_{h}||| $ $ \|e_{0}\| $ $ ||| e_{h}||| $ $ \|e_{0}\| $
1/8 9.9173e-01 5.3131e-02 7.8508e-02 3.2464e-03
1/16 4.9588e-01 1.3272e-02 1.9677e-02 4.0611e-04
1/32 2.4793e-01 3.3169e-03 4.9226e-03 5.0761e-05
1/64 1.2396e-01 8.2914e-04 1.2309e-03 6.3445e-06
Rate. 1.0001 2.0001 1.9997 3.0001
Table 2.  OPWG with $ (\mathbb{P}_1, \mathbb{P}_1, \mathbb{P}_{0}^{2}) $ and $ \beta_0 = 1, 2, 3, 4 $ for Example 1
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ $ ||| e_h ||| $ $ \|e_0\| $
$ \beta_0=1 $ $ \beta_0=2 $
$ 1/8 $ 1.3258e+00 7.4931e-02 1.0550e+00 5.9839e-02
$ 1/16 $ 1.0306e+00 3.4203e-02 5.6097e-01 1.5700e-02
$ 1/32 $ 9.4663e-01 2.5074e-02 3.1098e-01 4.3112e-03
$ 1/64 $ 9.2663e-01 2.3053e-02 1.8215e-01 1.2815e-03
Rate. 0.0308 0.1212 0.7717 1.7503
$ \beta_0=3 $ $ \beta_0=4 $
$ 1/8 $ 1.0019e+00 5.7508e-02 9.9304e-01 5.7135e-02
$ 1/16 $ 5.0137e-01 1.4381e-02 4.9628e-01 1.4278e-02
$ 1/32 $ 2.5075e-01 3.5954e-03 2.4804e-01 3.5682e-03
$ 1/64 $ 1.2539e-01 8.9887e-04 1.2399e-01 8.9191e-04
Rate. 0.9998 2. 1.0003 2.0002
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ $ ||| e_h ||| $ $ \|e_0\| $
$ \beta_0=1 $ $ \beta_0=2 $
$ 1/8 $ 1.3258e+00 7.4931e-02 1.0550e+00 5.9839e-02
$ 1/16 $ 1.0306e+00 3.4203e-02 5.6097e-01 1.5700e-02
$ 1/32 $ 9.4663e-01 2.5074e-02 3.1098e-01 4.3112e-03
$ 1/64 $ 9.2663e-01 2.3053e-02 1.8215e-01 1.2815e-03
Rate. 0.0308 0.1212 0.7717 1.7503
$ \beta_0=3 $ $ \beta_0=4 $
$ 1/8 $ 1.0019e+00 5.7508e-02 9.9304e-01 5.7135e-02
$ 1/16 $ 5.0137e-01 1.4381e-02 4.9628e-01 1.4278e-02
$ 1/32 $ 2.5075e-01 3.5954e-03 2.4804e-01 3.5682e-03
$ 1/64 $ 1.2539e-01 8.9887e-04 1.2399e-01 8.9191e-04
Rate. 0.9998 2. 1.0003 2.0002
Table 3.  OPWG with $ (\mathbb{P}_2, \mathbb{P}_2, \mathbb{P}_{1}^{2}) $ and $ \beta_0 = 2, 3, 4, 5 $ for Example 1
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ $ ||| e_h ||| $ $ \|e_0\| $
$ \beta_0=2 $ $ \beta_0=3 $
$ 1/8 $ 1.7917e+00 1.0256e-01 8.4595e-01 2.0487e-02
$ 1/16 $ 1.4060e+00 5.7784e-02 4.4264e-01 5.3334e-03
$ 1/32 $ 1.0580e+00 3.0997e-02 2.2464e-01 1.3530e-03
$ 1/64 $ 7.7468e-01 1.6118e-02 1.1291e-01 3.4023e-04
Rate. 0.4497 0.9435 0.9924 1.9916
$ \beta_0=4 $ $ \beta_0=5 $
$ 1/8 $ 3.6348e-01 4.6229e-03 1.6594e-01 3.2492e-03
$ 1/16 $ 1.2933e-01 5.9131e-04 4.1839e-02 4.0604e-04
$ 1/32 $ 4.5730e-02 7.4938e-05 1.0494e-02 5.0757e-05
$ 1/64 $ 1.6162e-02 9.4394e-06 2.6274e-03 6.3443e-06
Rate. 1.5005 2.9889 1.9979 3.0001
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ $ ||| e_h ||| $ $ \|e_0\| $
$ \beta_0=2 $ $ \beta_0=3 $
$ 1/8 $ 1.7917e+00 1.0256e-01 8.4595e-01 2.0487e-02
$ 1/16 $ 1.4060e+00 5.7784e-02 4.4264e-01 5.3334e-03
$ 1/32 $ 1.0580e+00 3.0997e-02 2.2464e-01 1.3530e-03
$ 1/64 $ 7.7468e-01 1.6118e-02 1.1291e-01 3.4023e-04
Rate. 0.4497 0.9435 0.9924 1.9916
$ \beta_0=4 $ $ \beta_0=5 $
$ 1/8 $ 3.6348e-01 4.6229e-03 1.6594e-01 3.2492e-03
$ 1/16 $ 1.2933e-01 5.9131e-04 4.1839e-02 4.0604e-04
$ 1/32 $ 4.5730e-02 7.4938e-05 1.0494e-02 5.0757e-05
$ 1/64 $ 1.6162e-02 9.4394e-06 2.6274e-03 6.3443e-06
Rate. 1.5005 2.9889 1.9979 3.0001
Table 4.  Comparison of condition number with optimal penalty parameters
$ h $ Without preconditioning Block-diagonal preconditioning
$ k=1, \beta_{0}=3 $ $ k=2, \beta_{0}=5 $ $ k=1, \beta_{0}=3 $ $ k=2, \beta_{0}=5 $
1/4 1.8272e+04 2.1075e+04 2.6265e+02 4.3079e+04
1/8 1.6957e+05 6.9533e+05 1.0135e+03 1.9257e+05
1/16 2.1585e+06 3.4759e+07 4.0481e+03 8.0866e+05
1/32 3.2471e+07 2.0653e+09 1.6228e+04 3.3427e+06
1/64 5.1218e+08 1.2974e+11 6.4995e+04 1.3570e+07
Order -3.9794 -5.9731 -2.0018 -2.0213
$ h $ Without preconditioning Block-diagonal preconditioning
$ k=1, \beta_{0}=3 $ $ k=2, \beta_{0}=5 $ $ k=1, \beta_{0}=3 $ $ k=2, \beta_{0}=5 $
1/4 1.8272e+04 2.1075e+04 2.6265e+02 4.3079e+04
1/8 1.6957e+05 6.9533e+05 1.0135e+03 1.9257e+05
1/16 2.1585e+06 3.4759e+07 4.0481e+03 8.0866e+05
1/32 3.2471e+07 2.0653e+09 1.6228e+04 3.3427e+06
1/64 5.1218e+08 1.2974e+11 6.4995e+04 1.3570e+07
Order -3.9794 -5.9731 -2.0018 -2.0213
Table 5.  Errors and condition numbers for Example 1 with $ (\mathbb{P}_1, \mathbb{P}_0, \mathbb{P}_{0}^{2}) $ and $ \beta_0 = 3 $
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ Cond. Pre. Cond.
$ 1/8 $ 1.5226e+00 8.7459e-02 6.6551e+03 2.1055e+03
$ 1/16 $ 7.7405e-01 2.2035e-02 8.1739e+04 7.9132e+03
$ 1/32 $ 3.8921e-01 5.5253e-03 1.2109e+06 3.1176e+04
$ 1/64 $ 1.9499e-01 1.3832e-03 1.9007e+07 1.2425e+05
Rate. 0.9971 1.9980 -3.9724 -1.9947
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ Cond. Pre. Cond.
$ 1/8 $ 1.5226e+00 8.7459e-02 6.6551e+03 2.1055e+03
$ 1/16 $ 7.7405e-01 2.2035e-02 8.1739e+04 7.9132e+03
$ 1/32 $ 3.8921e-01 5.5253e-03 1.2109e+06 3.1176e+04
$ 1/64 $ 1.9499e-01 1.3832e-03 1.9007e+07 1.2425e+05
Rate. 0.9971 1.9980 -3.9724 -1.9947
Table 6.  Errors and condition numbers for Example 1 with $ (\mathbb{P}_2, \mathbb{P}_1, \mathbb{P}_{1}^{2}) $ and $ \beta_0 = 5 $
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ Cond. Pre. Cond.
$ 1/8 $ 1.6622e-01 3.3354e-03 3.5419e+05 1.0229e+05
$ 1/16 $ 4.1912e-02 4.1731e-04 1.9810e+07 4.2176e+05
$ 1/32 $ 1.0513e-02 5.2184e-05 1.2227e+09 1.7166e+06
$ 1/64 $ 2.6321e-03 6.5231e-06 7.7586e+10 6.9742e+06
Rate. 1.9979 3.0000 -5.9877 -2.0225
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ Cond. Pre. Cond.
$ 1/8 $ 1.6622e-01 3.3354e-03 3.5419e+05 1.0229e+05
$ 1/16 $ 4.1912e-02 4.1731e-04 1.9810e+07 4.2176e+05
$ 1/32 $ 1.0513e-02 5.2184e-05 1.2227e+09 1.7166e+06
$ 1/64 $ 2.6321e-03 6.5231e-06 7.7586e+10 6.9742e+06
Rate. 1.9979 3.0000 -5.9877 -2.0225
Table 7.  OPWG with $ (\mathbb{P}_1, \mathbb{P}_1, \mathbb{P}_{0}^{2}) $ and optimal penalty parameter for Example 2
dof. $ \alpha=0.5 $ $ \alpha=0.25 $ Condition Number
$ ||| e_h ||| $ $ \|e_{0}\| $ $ ||| e_h ||| $ $ \|e_{0}\| $ Cond. Pre. Cond.
2.0880e+3 4.2303e-1 7.0060e-2 9.6614e-1 7.3906e-2 1.7335e+6 1.1357e+3
8.3520e+3 2.7461e-1 1.8365e-2 7.8292e-1 2.2116e-2 2.4882e+7 4.5578e+3
3.3408e+4 1.8503e-1 4.7471e-3 6.4655e-1 7.3419e-3 3.8905e+8 1.8270e+4
1.3363e+5 1.3025e-1 1.2371e-3 5.5838e-1 2.8274e-3 6.1854e+9 7.3140e+4
5.3453e+5 9.2125e-2 3.2954e-4 4.6994e-1 1.1394e-3 9.8828e+10 2.9267e+5
dof. $ \alpha=0.5 $ $ \alpha=0.25 $ Condition Number
$ ||| e_h ||| $ $ \|e_{0}\| $ $ ||| e_h ||| $ $ \|e_{0}\| $ Cond. Pre. Cond.
2.0880e+3 4.2303e-1 7.0060e-2 9.6614e-1 7.3906e-2 1.7335e+6 1.1357e+3
8.3520e+3 2.7461e-1 1.8365e-2 7.8292e-1 2.2116e-2 2.4882e+7 4.5578e+3
3.3408e+4 1.8503e-1 4.7471e-3 6.4655e-1 7.3419e-3 3.8905e+8 1.8270e+4
1.3363e+5 1.3025e-1 1.2371e-3 5.5838e-1 2.8274e-3 6.1854e+9 7.3140e+4
5.3453e+5 9.2125e-2 3.2954e-4 4.6994e-1 1.1394e-3 9.8828e+10 2.9267e+5
[1]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020196

[2]

Guanrong Li, Yanping Chen, Yunqing Huang. A hybridized weak Galerkin finite element scheme for general second-order elliptic problems. Electronic Research Archive, 2020, 28 (2) : 821-836. doi: 10.3934/era.2020042

[3]

Lunji Song, Zhimin Zhang. Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1405-1426. doi: 10.3934/dcdsb.2015.20.1405

[4]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, , () : -. doi: 10.3934/era.2020097

[5]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020096

[6]

Xiu Ye, Shangyou Zhang. A new weak gradient for the stabilizer free weak Galerkin method with polynomial reduction. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020277

[7]

Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034

[8]

Doyoon Kim, Seungjin Ryu. The weak maximum principle for second-order elliptic and parabolic conormal derivative problems. Communications on Pure & Applied Analysis, 2020, 19 (1) : 493-510. doi: 10.3934/cpaa.2020024

[9]

Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583

[10]

Ruishu Wang, Lin Mu, Xiu Ye. A locking free Reissner-Mindlin element with weak Galerkin rotations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 351-361. doi: 10.3934/dcdsb.2018086

[11]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, , () : -. doi: 10.3934/era.2020089

[12]

Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295

[13]

Assyr Abdulle, Yun Bai, Gilles Vilmart. Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 91-118. doi: 10.3934/dcdss.2015.8.91

[14]

Ming Yan, Lili Chang, Ningning Yan. Finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs. Mathematical Control & Related Fields, 2012, 2 (2) : 183-194. doi: 10.3934/mcrf.2012.2.183

[15]

Anurag Jayswala, Tadeusz Antczakb, Shalini Jha. Second order modified objective function method for twice differentiable vector optimization problems over cone constraints. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 133-145. doi: 10.3934/naco.2019010

[16]

Anthony Quas, Terry Soo. Weak mixing suspension flows over shifts of finite type are universal. Journal of Modern Dynamics, 2012, 6 (4) : 427-449. doi: 10.3934/jmd.2012.6.427

[17]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

[18]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[19]

Qilin Wang, Xiao-Bing Li, Guolin Yu. Second-order weak composed epiderivatives and applications to optimality conditions. Journal of Industrial & Management Optimization, 2013, 9 (2) : 455-470. doi: 10.3934/jimo.2013.9.455

[20]

Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (23)
  • HTML views (127)
  • Cited by (0)

Other articles
by authors

[Back to Top]