[1]
|
D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749-1779.
doi: 10.1137/S0036142901384162.
|
[2]
|
F. Brezzi, J. Douglas Jr. and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), 217-235.
doi: 10.1007/BF01389710.
|
[3]
|
B. Li and X. Xie, A two-level algorithm for the weak Galerkin discretization of diffusion problems, J. Comput. Appl. Math., 287 (2015), 179-195.
doi: 10.1016/j.cam.2015.03.043.
|
[4]
|
K. Liu, L. Song and S. Zhou, An over-penalized weak Galerkin method for second-order elliptic problems, J. Comput. Math., 36 (2018), 866-880.
doi: 10.4208/jcm.1705-m2016-0744.
|
[5]
|
L. Mu, J. Wang, Y. Wang and X. Ye, A computational study of the weak Galerkin method for second-order elliptic equations, Numer. Algor., 63 (2012), 753-777.
doi: 10.1007/s11075-012-9651-1.
|
[6]
|
L. Mu, J. Wang, G. Wei, X. Ye and S. Zhao, Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250 (2013), 106-125.
doi: 10.1016/j.jcp.2013.04.042.
|
[7]
|
L. Mu, J. Wang and X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal., 35 (2015), 1228-1255.
doi: 10.1093/imanum/dru026.
|
[8]
|
L. Mu, J. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduction, J. Comput. Appl. Math., 285 (2015), 45-58.
doi: 10.1016/j.cam.2015.02.001.
|
[9]
|
L. Mu, J. Wang and X. Ye, Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31-53.
|
[10]
|
L. Mu, J. Wang, X. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.
doi: 10.1007/s10915-014-9964-4.
|
[11]
|
A. Quarteroni and V. Alberto, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, 23, Springer, Berlin, Heidelberg, 1994.
doi: 10.1007/978-3-540-85268-1.
|
[12]
|
P.-A. Raviart and J.-M. Thomas, A mixed finite element method for 2-nd order elliptic problems, in Galligani I., Magenes E. (eds) Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, vol 606, Springer, Berlin, Heidelberg.
doi: https://doi.org/10.1007/BFb0064470.
|
[13]
|
B. Riviere, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2008.
doi: doi.org/10.1137/1.9780898717440.
|
[14]
|
L. Song, K. Liu and S. Zhao, A weak Galerkin method with an over-relaxed stabilization for low regularity elliptic problems, J. Sci. Comput., 71 (2017), 195-218.
doi: 10.1007/s10915-016-0296-4.
|
[15]
|
L. Song, S. Zhao and K. Liu, A relaxed weak Galerkin method for elliptic interface problems with low regularity, Appl. Numer. Math., 128 (2018), 65-80.
doi: 10.1016/j.apnum.2018.01.021.
|
[16]
|
C. Wang and J. Wang, An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes, Comput. Math. Appl., 68 (2014), 2314-2330.
doi: 10.1016/j.camwa.2014.03.021.
|
[17]
|
J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.
doi: 10.1016/j.cam.2012.10.003.
|
[18]
|
J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83 (2014), 2101-2126.
doi: 10.1090/S0025-5718-2014-02852-4.
|
[19]
|
J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.
doi: 10.1007/s10444-016-9471-2.
|
[20]
|
Q. Zhai, X. Ye, R. Wang and R. Zhang, A weak Galerkin finite element scheme with boundary continuity for second-order elliptic problems, Comput. Math. Appl., 74 (2017), 2243-2252.
doi: 10.1016/j.camwa.2017.07.009.
|