Advanced Search
Article Contents
Article Contents

Uniform stabilization of Boussinesq systems in critical $ \mathbf{L}^q $-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls

Abstract Full Text(HTML) Related Papers Cited by
  • We consider the d-dimensional Boussinesq system defined on a sufficiently smooth bounded domain, with homogeneous boundary conditions, and subject to external sources, assumed to cause instability. The initial conditions for both fluid and heat equations are taken of low regularity. We then seek to uniformly stabilize such Boussinesq system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of explicitly constructed, feedback controls, which are localized on an arbitrarily small interior subdomain. In addition, they will be minimal in number, and of reduced dimension: more precisely, they will be of dimension $ (d-1) $ for the fluid component and of dimension $ 1 $ for the heat component. The resulting space of well-posedness and stabilization is a suitable, tight Besov space for the fluid velocity component (close to $ \mathbf{L}^3(\Omega $) for $ d = 3 $) and the space $ L^q(\Omega $) for the thermal component, $ q > d $. Thus, this paper may be viewed as an extension of [63], where the same interior localized uniform stabilization outcome was achieved by use of finite dimensional feedback controls for the Navier-Stokes equations, in the same Besov setting.

    Mathematics Subject Classification: 34H05, 35B35, 35K40, 93C20.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Amann, Linear and Quasilinear Parabolic Problems: Volume I: Abstract Linear Theory, Monographs in Mathematics, 89. Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-3-0348-9221-6.
    [2] H. Amann, On the strong solvability of the Navier-Stokes equations, J. Math. Fluid Mech., 2 (2000), 16-98.  doi: 10.1007/s000210050018.
    [3] P. Acevedo Tapia, $L^p$-Theory for the Boussinesq System, Ph.D theis, Universidad de Chille, Faculatad de Ciencias Fisicas y Mathematicas, Departamento de Ingeniearia Mathematica, Santiago de Chille, 2015.
    [4] P. AcevedoC. Amrouche and C. Conca, Boussinesq system with non-homogeneous boundary conditions, Appl. Math. Lett., 53 (2016), 39-44.  doi: 10.1016/j.aml.2015.09.015.
    [5] P. AcervedoC. Amrouche and C. Conca, $L^p$ theory for Boussinesq system with Dirichlet boundary conditions, Appl. Anal., 98 (2019), 272-294.  doi: 10.1080/00036811.2018.1530762.
    [6] A. V. Balakrishnan, Applied Functional Analysis, Second edition, Applications of Mathematics, 3. Springer-Verlag, New York-Berlin, 1981.
    [7] M. Badra, Abstract settings for stabilization of nonlinear parabolic systems with Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control, Discrete and Continuous Dynamical Systems, 32 (2012), 1169-1208.  doi: 10.3934/dcds.2012.32.1169.
    [8] V. Barbu,, Stabilization of Navier-Stokes flows, Springer, 2011. doi: 10.1007/978-0-85729-043-4.
    [9] R. W. Brockett, Asymptotic and feedback stabilization, Differential Geometric Control Theory, Birkhäuser, Basel, (1983), 181–191.
    [10] G. Basile and G. Marro, Controlled and Conditioned Invariant in Linear System Theory, Prentice Hall, Inc., Englewood Cliffs, NJ, 1992.
    [11] V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., 53 (2004), 1443-1494.  doi: 10.1512/iumj.2004.53.2445.
    [12] V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Mem. Amer. Math. Soc., 181 (2006), x+128 pp. doi: 10.1090/memo/0852.
    [13] V. BarbuI. Lasiecka and R. Triggiani, Abstract settings fr tangential boundary stabilization of Naiver Stokes equations by high-and low-gain feedback controllers, Nonlinear Analysis, 64 (2006), 2704-2746.  doi: 10.1016/j.na.2005.09.012.
    [14] V. BarbuI. Lasiecka and R. Triggiani, Local exponential stabilization strategies of the Navier Stokes equations, $d = 2, 3$, via feedback stabilization of its linearization, Optimal of Coupled Systems of Partial Differential Equations, Internat. Ser. Numer. Math., Birkhäuser, Basel, 155 (2007), 13-46.  doi: 10.1007/978-3-7643-7721-2_2.
    [15] J. A. Burns and W. Hu, Approximation methods for boundary control of the Boussinesq equations, 52nd IEEE Conference on Decision and Control. IEEE, (2013), 454–459.
    [16] J. A. BurnsX. M. He and W. W. Hu, Feedback stabilization of a thermal fluid system with mixed boundary control, Computers and Mathematics with Applications, 71 (2016), 2170-2191.  doi: 10.1016/j.camwa.2016.01.011.
    [17] E. Fernández-CaraS. GuerreroO. Yu. Imanuvilov and J.-P. Puel, Some controllability results of the $N$ dimensional Navier-Stokes and Boussinesq systems with $N-1$ sacalar controls, SIAM J. Control and Optim., 45 (2006), 146-173.  doi: 10.1137/04061965X.
    [18] C. T. Chen, Linear Systems Theory and Design, Oxford University Press, 1984, 334 pp.
    [19] P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988.
    [20] J.-M. Coron, On the controllability of the 2-d incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Control Optim. Calc. Var., 1 (1995/96), 35-75.  doi: 10.1051/cocv:1996102.
    [21] J.-M. Coron, On the controllability of $2$-d incompressible perfect fluids, J. Math. Pures Appl. (9), 75 (1996), 155-188. 
    [22] J.-M. Coron and S. Guerrero, Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component, J. Math. Pures Appl. (9), 92 (2009), 528-545.  doi: 10.1016/j.matpur.2009.05.015.
    [23] J.-M. Coron and S. Guerrero, Null controllability of the $N$ dimensional Stikes system with $N-1$ scalar controls, J. Differential Equations, 246 (2009), 2908-2921.  doi: 10.1016/j.jde.2008.10.019.
    [24] J.-M. Coron and P. Lissy, Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components, Inv. Math., 198 (2014), 833-880.  doi: 10.1007/s00222-014-0512-5.
    [25] R. Danchin and P. Mucha, Critical functional framework and maximal regularity in action on systems of incompressible flows, Mém. Soc. Math. Fr. (N.S.), (2015). doi: 10.24033/msmf.451.
    [26] L. De Simon, Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rendiconti del Seminario Matematico della Universita di Padova, 34 (1964), 205-223. 
    [27] G. Dore, Maximal regularity in $L^p$ spaces for an abstract Cauchy problem, Advances in Differential Equations, 5 (2000), 293-322. 
    [28] L. EscauriazaG. A. Seregin and V. Šverák, $L_{3, \infty}$-solutions of Navier-Stokes equations and backward uniqueness, Math. Surveys, 58 (2003), 211-250.  doi: 10.1070/RM2003v058n02ABEH000609.
    [29] E. FabesO. Mendez and M. Mitrea, Boundary layers of Sobolev-Besov spaces and Poisson's equations for the Laplacian for the Lipschitz domains, J. Func. Anal., 159 (1998), 323-368.  doi: 10.1006/jfan.1998.3316.
    [30] E. Fernandez-CaraS. GuerreroO. Y. Imanuvilov and J.-P. Puel, Some controllability results for the $N$-dimensional Navier-Stokes and Boussinesq systems with $N-1$ scalar controls, SIAM J. Control Optim., 45 (2006), 146-173.  doi: 10.1137/04061965X.
    [31] E. Fernandez-Cara, M. Santos and D. A. Souza, Boundary controllability of incompressibel Euler fluids with Boussinesq heat effects, Math. Control Signals Systems, 28 (2016), Art. 7, 28 pp. doi: 10.1007/s00498-015-0158-x.
    [32] C. Foias and R. Temam, Determination of the solution of the Navier-Stokes equations by a set of nodal values, Mathematics of Computation, 43 (1984), 117-133.  doi: 10.1090/S0025-5718-1984-0744927-9.
    [33] C. Fabre and G. Lebeau, Prolongement unique des solutions de l'equation de Stokes, Comm. Part. Diff. Eqts., 21 (1996), 573-596.  doi: 10.1080/03605309608821198.
    [34] C. Fabre, Uniqueness results for Stokes Equations and their consequences in linear and nonlinear control problems, ESAIM Control Optim. Calc. Var., 1 (1995/96), 267-302.  doi: 10.1051/cocv:1996109.
    [35] A. V. Fursikov, Stabilization for the 3D Navier-Stokes system by feedback boundary control, Discrete and Continuous Dynamical Systems, 10 (2004), 289-314.  doi: 10.3934/dcds.2004.10.289.
    [36] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Volume I: Nonlinear Steady Problems, Springer Tracts in Natural Philosophy, 38. Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-5364-8.
    [37] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Volume II: Linearized Steady Problems, Springer Tracts in Natural Philosophy, 39. Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-5364-8.
    [38] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems, Second edition, Springer Monographs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9.
    [39] I. GallagherG. S. Koch and F. Planchon, A profile decomposition approach to the $L^{\infty}_t (L^3_x)$ Navier-Stokes regularity criterion, Math. Ann., 355 (2013), 1527-1559.  doi: 10.1007/s00208-012-0830-0.
    [40] M. GeissertK. Götze and M. Hieber, ${L}_p$-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized newtonian fluids, Transaction of American Math Society, 365 (2013), 1393-1439.  doi: 10.1090/S0002-9947-2012-05652-2.
    [41] Y. Giga, Analyticity of the semigroup generated by the Stokes operator in $L_r$ spaces, Math. Z., 178 (1981), 279-329.  doi: 10.1007/BF01214869.
    [42] Y. Giga, Domains of fractional powers of the Stokes operator in $L_r$ spaces, Arch. Rational Mech. Anal., 89 (1985), 251-265.  doi: 10.1007/BF00276874.
    [43] S. Guerrero, Local exact controllability to the trajectories of the Boussinesq system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 29-61.  doi: 10.1016/j.anihpc.2005.01.002.
    [44] L. Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators, Classics in Mathematics, Springer, Berlin, 2007. doi: 10.1007/978-3-540-49938-1.
    [45] M. Hieber and J. Saal, The Stokes equation in the $L^p$-setting: Well-posedness and regularity properties, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, (2018), 117–206. doi: 10.1007/978-3-319-13344-7_3.
    [46] H. Jia and V. Šverák, Minimal $L^3$-initial data for potential Navier-Stokes singularities, SIAM J. Math. Anal., 45 (2013), 1448-1459.  doi: 10.1137/120880197.
    [47] D. A. Jones and E. S. Titi, Upper bounds on the number of determining nodes, and volume elements for the Stokes equations, Indiana University Mathematics Journal, 42 (1993), 875-887.  doi: 10.1512/iumj.1993.42.42039.
    [48] T. Kato, Perturbation Theory of Linear Operators, Die Grundlehren der Mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York, 1966.
    [49] S. Kesavan, Topics in Functional Analysis and Applications, John Wiley & Sons, Inc., New York, 1989.
    [50] H. Kim, The existence and uniqueness of very weak solutions of the stationary Boussinesq system, Nonlinear Analysis: Theory, Methods & Applications, 75 (2012), 317-330.  doi: 10.1016/j.na.2011.08.035.
    [51] I. Kukavica and A. Tuffaha, Regularity of solutions to a free boundary problem of fluid-structure interaction, Indiana University Math J., 61 (2012), 1817-1859.  doi: 10.1512/iumj.2012.61.4746.
    [52] P. C. Kunstmann and L. Weis, Perturbation theorems for maximal $L^p$-regularity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30 (2001), 415-435. 
    [53] P. C. Kunstmann and L. Weis, Maximal $L^p$-regularity for parabolic equations, Fourier multiplier theorems and $H^{\infty}$-functional calculus, Functional Analytic Methods for Evolution Equations, Lecture Notes in Math., Springer, Berlin, 1855 (2004), 65-311.  doi: 10.1007/978-3-540-44653-8_2.
    [54] I. Lasiecka and R. Triggiani, Stabilization and structural assignment of Dirichlet boundary feedback parabolic equations, SIAM J. Control Optimiz., 21 (1983), 766-803.  doi: 10.1137/0321047.
    [55] I. Lasiecka and R. Triggiani, Stabilization of Neumann boundary feedback parabolic equations: The case of trace in the feedback loop, Appl. Math. Optimiz., 10 (1983), 307-350.  doi: 10.1007/BF01448392.
    [56] I. Lasiecka and R. Triggiani, Uniform stabilization with arbitrary decay rates of the Oseen equation by finite-dimensional tangential localized interior and boundary controls, Semigroups of Operators - Theory and Applications, Springer Proc. Math. Stat., Springer, Cham, 113 (2015), 125-154.  doi: 10.1007/978-3-319-12145-1_8.
    [57] I. Lasiecka and R. Triggiani, Stabilization to an equilibrium of the Navier-Stokes equations with tangential action of feedback controllers, Nonlinear Analysis, 121 (2015), 424-446.  doi: 10.1016/j.na.2015.03.012.
    [58] I. Lasiecka and R. Triggiani, Control Theory of Partial Differential Equations: Continuous and Approximation Theories. I. Abstract Parabolic Equations (680pp), Encyclopedia of Mathematics and its Applications Series, Cambridge University Press, 2000.
    [59] I. Lasiecka and R. Triggiani, $L_2(\Sigma)$-regularity of the boundary $\rightarrow$ boundary operator $B^*L$ for hyperbolic and Petrowski PDEs, Abstr. Appl. Anal., (2003), 1061–1139. doi: 10.1155/S1085337503305032.
    [60] I. Lasiecka and R. Triggiani, The operator $B^*L$ for the wave equation with Dirichlet control, Abstract and Applied Analysis, 2004 (2004), 625-634.  doi: 10.1155/S1085337504404011.
    [61] I. Lasiecka and R. Triggiani, Linear hyperbolic and Petrowski-type PDEs with continuous boundary control $\to$ boundary observation open loop map: Implications on nonlinear boundary stabilization with optimal decay rates, Sobolev Spaces in Mathematics. III, Int. Math. Ser. (N. Y.), Springer, New York, 10 (2009), 187-276.  doi: 10.1007/978-0-387-85652-0_5.
    [62] I. Lasiecka and R. Triggiani, Uniform energy decay rates of Hyperbolic equations with nonlinear boundary and interior dissipation, Control Cybernet., 37 (2008), 935-969. 
    [63] I. Lasiecka, B. Priyasad and R. Triggiani, Uniform stabilization of Navier-Stokes equations in critical $L^q$-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls, Appl. Math. Optim., (2019), https://doi.org/10.1007/s00245-019-09607-9.
    [64] I. Lasiecka, B. Priyasad and R. Triggiani, Uniform stabilization of $3D$ Navier-Stokes Equations with finite dimensional tangential boundary, localized feedback controllers, submitted.
    [65] A.-I. Lefter, On the feedback stabilization of Boussinesq equations, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 57 (2011), 285–310. doi: 10.2478/v10157-011-0027-y.
    [66] S. A. Lorca and J. L. Boldrini, Stationary solution for generalized Boussinesq models, Journal of Differential Equations, 124 (1996), 389-406.  doi: 10.1006/jdeq.1996.0016.
    [67] V. N. Maslenniskova and M. Bogovskii, Elliptic boundary values in unbounded domains with noncompact and nonsmooth boundaries, Rend. Sem. Mat. Fis. Milano, 56 (1986), 125-138.  doi: 10.1007/BF02925141.
    [68] A. M. Micheletti, Perturbazione dello spettro dell' operatore di Laplace in relazione ad una variazione del campo, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 26 (1972), 151-169. 
    [69] H. Morimoto, On the existence of weak solutions of equation of natural convection, J. Fac. Sci. Univ. Tokyo Sec. IA Math., 36 (1989), 87-102. 
    [70] P. Mucha and W. Zajaczkowski, On the existence for the Cauchy-Neumann problem for the Stokes system in $L_p $ framework, Studia Mathematica, 143 (2000), 75-101.  doi: 10.4064/sm-143-1-75-101.
    [71] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.
    [72] J. Prüss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Monographs in Mathematics, 105. Birkhäuser/Springer, [Cham], 2016. doi: 10.1007/978-3-319-27698-4.
    [73] J. Prüss and R. Schaubelt, Solvability and maximal regularity of parabolic equations with coefficients continuous in time, J. Math. Anal. Appl., 256 (2001), 405-430.  doi: 10.1006/jmaa.2000.7247.
    [74] M. RamaswamyJ.-P. Raymond and A. Roy, Boundary feedback stabilization of the Boussinesq system with mixed boundary conditions, J. Differential Equations, 266 (2019), 4268-4304.  doi: 10.1016/j.jde.2018.09.038.
    [75] W. Rusin and V. Šverak, Minimal initial data for potential Navier-Stokes singularities, J. Funct. Anal., 260 (2011), 879–891, https://arXiv.org/abs/0911.0500. doi: 10.1016/j.jfa.2010.09.009.
    [76] J. Saal, Maximal regularity for the Stokes system on non-cylindrical space-time domains, J. Math. Soc. Japan, 58 (2006), 617-641.  doi: 10.2969/jmsj/1156342030.
    [77] M. Santos da RochaM. A. Rojas-Medar and M. D. Rojas-Medar, On the existence and uniqueness of the stationary solution to equations of natural convection with boundary data in $L^2$, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 609-621.  doi: 10.1098/rspa.2002.1036.
    [78] Y. Shibata and S. Shimizu, On the $L^p-L^q$ maximal regularity of the Neumann problem for the Stokes equations in a bounded domain, Asymptotic Analysis and Singularities - Hyperbolic and Dispersive PDEs and Fluid Mechanics, Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, 47 (2007), 349-362.  doi: 10.2969/aspm/04710349.
    [79] V. A. Solonnikov, Estimates of the solutions of a nonstationary linearized system of Navier- Stokes equations, A.M.S. Translations, 75 (1968), 1-116. 
    [80] V. A. Solonnikov, Estimates for solutions of non-stationary Navier-Stokes equations, J. Sov. Math., 8 (1977), 467-529. 
    [81] A. E. Taylor and D. Lay, Introduction to Functional Analysis, Second edition, John Wiley & Sons, New York-Chichester-Brisbane, 1980.
    [82] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2. North-Holland Publishing Co., Amsterdam-New York, 1979.
    [83] R. Triggiani, On the stabilizability problem of Banach spaces, J. Math. Anal. Appl., 52 (1975), 383-403.  doi: 10.1016/0022-247X(75)90067-0.
    [84] R. Triggiani, Boundary feedback stability of parabolic equations, Appl. Math. Optimiz., 6 (1975), 201-220.  doi: 10.1007/BF01442895.
    [85] R. Triggiani, Unique Continuation of the boundary over-determined Stokes and Oseen eigenproblems, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 645-677.  doi: 10.3934/dcdss.2009.2.645.
    [86] R. Triggiani, Linear independence of boundary traces of eigenfunctions of elliptic and Stokes Operators and applications, Appl. Math. (Warsaw), 35 (2008), 481-512.  doi: 10.4064/am35-4-6.
    [87] R. Triggiani, Unique continuation from an arbitrary interior subdomain of the variable-coefficient Oseen equation, Nonlinear Analysis, 71 (2009), 4967-4976.  doi: 10.1016/j.na.2009.03.073.
    [88] R. Triggiani and X. Wan, Unique continuation properties of over-determined static Boussinesq problems with applications to uniform stabilization of dynamic Boussinesq systems, submitted.
    [89] K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math., 98 (1972), 1059-1078.  doi: 10.2307/2374041.
    [90] E. J. Villamizar-RoaM. A. Rodríguez-Bellido and M. A. Rojas-Medar, The Boussinesq system with mixed nonsmooth boundary data, C. R. Math. Acad. Sci. Paris, 343 (2006), 191-196.  doi: 10.1016/j.crma.2006.06.011.
    [91] W. von Whal, The Equations of Navier-Stokes and Abstract Parabolic Equations, Springer Fachmedien Wiesbaden, Vieweg+Teubner Verlag, 1985. doi: 10.1007/978-3-663-13911-9.
    [92] G. S. Wang, Stabilization of the Boussinesq equation via internal feedback controls, Nonlinear Analysis: Theory, Methods & Applications, 52 (2003), 485-506.  doi: 10.1016/S0362-546X(02)00114-1.
    [93] L. Weis, A new approach to maximal $L_p$-regularity, Evolution Equations and Their Applications in Physical and Life Sciences, Lecture Notes in Pure and Appl. Math., Dekker, New York, 215 (2001), 195-214. 
    [94] J. Zabczyk, Mathematical Control Theory: An Introduction, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992.
  • 加载中

Article Metrics

HTML views(472) PDF downloads(251) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint