October  2020, 25(10): 4071-4117. doi: 10.3934/dcdsb.2020187

Uniform stabilization of Boussinesq systems in critical $ \mathbf{L}^q $-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls

1. 

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA

2. 

IBS, Polish Academy of Sciences, Warsaw, Poland

3. 

Institute for Mathematics and Scientific Computing, University of Graz, A-8010 Graz, Austria

Received  August 2019 Revised  March 2020 Published  June 2020

We consider the d-dimensional Boussinesq system defined on a sufficiently smooth bounded domain, with homogeneous boundary conditions, and subject to external sources, assumed to cause instability. The initial conditions for both fluid and heat equations are taken of low regularity. We then seek to uniformly stabilize such Boussinesq system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of explicitly constructed, feedback controls, which are localized on an arbitrarily small interior subdomain. In addition, they will be minimal in number, and of reduced dimension: more precisely, they will be of dimension $ (d-1) $ for the fluid component and of dimension $ 1 $ for the heat component. The resulting space of well-posedness and stabilization is a suitable, tight Besov space for the fluid velocity component (close to $ \mathbf{L}^3(\Omega $) for $ d = 3 $) and the space $ L^q(\Omega $) for the thermal component, $ q > d $. Thus, this paper may be viewed as an extension of [63], where the same interior localized uniform stabilization outcome was achieved by use of finite dimensional feedback controls for the Navier-Stokes equations, in the same Besov setting.

Citation: Irena Lasiecka, Buddhika Priyasad, Roberto Triggiani. Uniform stabilization of Boussinesq systems in critical $ \mathbf{L}^q $-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 4071-4117. doi: 10.3934/dcdsb.2020187
References:
[1]

H. Amann, Linear and Quasilinear Parabolic Problems: Volume I: Abstract Linear Theory, Monographs in Mathematics, 89. Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[2]

H. Amann, On the strong solvability of the Navier-Stokes equations, J. Math. Fluid Mech., 2 (2000), 16-98.  doi: 10.1007/s000210050018.  Google Scholar

[3]

P. Acevedo Tapia, $L^p$-Theory for the Boussinesq System, Ph.D theis, Universidad de Chille, Faculatad de Ciencias Fisicas y Mathematicas, Departamento de Ingeniearia Mathematica, Santiago de Chille, 2015. Google Scholar

[4]

P. AcevedoC. Amrouche and C. Conca, Boussinesq system with non-homogeneous boundary conditions, Appl. Math. Lett., 53 (2016), 39-44.  doi: 10.1016/j.aml.2015.09.015.  Google Scholar

[5]

P. AcervedoC. Amrouche and C. Conca, $L^p$ theory for Boussinesq system with Dirichlet boundary conditions, Appl. Anal., 98 (2019), 272-294.  doi: 10.1080/00036811.2018.1530762.  Google Scholar

[6]

A. V. Balakrishnan, Applied Functional Analysis, Second edition, Applications of Mathematics, 3. Springer-Verlag, New York-Berlin, 1981.  Google Scholar

[7]

M. Badra, Abstract settings for stabilization of nonlinear parabolic systems with Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control, Discrete and Continuous Dynamical Systems, 32 (2012), 1169-1208.  doi: 10.3934/dcds.2012.32.1169.  Google Scholar

[8]

V. Barbu,, Stabilization of Navier-Stokes flows, Springer, 2011. doi: 10.1007/978-0-85729-043-4.  Google Scholar

[9]

R. W. Brockett, Asymptotic and feedback stabilization, Differential Geometric Control Theory, Birkhäuser, Basel, (1983), 181–191. Google Scholar

[10]

G. Basile and G. Marro, Controlled and Conditioned Invariant in Linear System Theory, Prentice Hall, Inc., Englewood Cliffs, NJ, 1992.  Google Scholar

[11]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., 53 (2004), 1443-1494.  doi: 10.1512/iumj.2004.53.2445.  Google Scholar

[12]

V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Mem. Amer. Math. Soc., 181 (2006), x+128 pp. doi: 10.1090/memo/0852.  Google Scholar

[13]

V. BarbuI. Lasiecka and R. Triggiani, Abstract settings fr tangential boundary stabilization of Naiver Stokes equations by high-and low-gain feedback controllers, Nonlinear Analysis, 64 (2006), 2704-2746.  doi: 10.1016/j.na.2005.09.012.  Google Scholar

[14]

V. BarbuI. Lasiecka and R. Triggiani, Local exponential stabilization strategies of the Navier Stokes equations, $d = 2, 3$, via feedback stabilization of its linearization, Optimal of Coupled Systems of Partial Differential Equations, Internat. Ser. Numer. Math., Birkhäuser, Basel, 155 (2007), 13-46.  doi: 10.1007/978-3-7643-7721-2_2.  Google Scholar

[15]

J. A. Burns and W. Hu, Approximation methods for boundary control of the Boussinesq equations, 52nd IEEE Conference on Decision and Control. IEEE, (2013), 454–459. Google Scholar

[16]

J. A. BurnsX. M. He and W. W. Hu, Feedback stabilization of a thermal fluid system with mixed boundary control, Computers and Mathematics with Applications, 71 (2016), 2170-2191.  doi: 10.1016/j.camwa.2016.01.011.  Google Scholar

[17]

E. Fernández-CaraS. GuerreroO. Yu. Imanuvilov and J.-P. Puel, Some controllability results of the $N$ dimensional Navier-Stokes and Boussinesq systems with $N-1$ sacalar controls, SIAM J. Control and Optim., 45 (2006), 146-173.  doi: 10.1137/04061965X.  Google Scholar

[18]

C. T. Chen, Linear Systems Theory and Design, Oxford University Press, 1984, 334 pp. Google Scholar

[19]

P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988.  Google Scholar

[20]

J.-M. Coron, On the controllability of the 2-d incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Control Optim. Calc. Var., 1 (1995/96), 35-75.  doi: 10.1051/cocv:1996102.  Google Scholar

[21]

J.-M. Coron, On the controllability of $2$-d incompressible perfect fluids, J. Math. Pures Appl. (9), 75 (1996), 155-188.   Google Scholar

[22]

J.-M. Coron and S. Guerrero, Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component, J. Math. Pures Appl. (9), 92 (2009), 528-545.  doi: 10.1016/j.matpur.2009.05.015.  Google Scholar

[23]

J.-M. Coron and S. Guerrero, Null controllability of the $N$ dimensional Stikes system with $N-1$ scalar controls, J. Differential Equations, 246 (2009), 2908-2921.  doi: 10.1016/j.jde.2008.10.019.  Google Scholar

[24]

J.-M. Coron and P. Lissy, Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components, Inv. Math., 198 (2014), 833-880.  doi: 10.1007/s00222-014-0512-5.  Google Scholar

[25]

R. Danchin and P. Mucha, Critical functional framework and maximal regularity in action on systems of incompressible flows, Mém. Soc. Math. Fr. (N.S.), (2015). doi: 10.24033/msmf.451.  Google Scholar

[26]

L. De Simon, Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rendiconti del Seminario Matematico della Universita di Padova, 34 (1964), 205-223.   Google Scholar

[27]

G. Dore, Maximal regularity in $L^p$ spaces for an abstract Cauchy problem, Advances in Differential Equations, 5 (2000), 293-322.   Google Scholar

[28]

L. EscauriazaG. A. Seregin and V. Šverák, $L_{3, \infty}$-solutions of Navier-Stokes equations and backward uniqueness, Math. Surveys, 58 (2003), 211-250.  doi: 10.1070/RM2003v058n02ABEH000609.  Google Scholar

[29]

E. FabesO. Mendez and M. Mitrea, Boundary layers of Sobolev-Besov spaces and Poisson's equations for the Laplacian for the Lipschitz domains, J. Func. Anal., 159 (1998), 323-368.  doi: 10.1006/jfan.1998.3316.  Google Scholar

[30]

E. Fernandez-CaraS. GuerreroO. Y. Imanuvilov and J.-P. Puel, Some controllability results for the $N$-dimensional Navier-Stokes and Boussinesq systems with $N-1$ scalar controls, SIAM J. Control Optim., 45 (2006), 146-173.  doi: 10.1137/04061965X.  Google Scholar

[31]

E. Fernandez-Cara, M. Santos and D. A. Souza, Boundary controllability of incompressibel Euler fluids with Boussinesq heat effects, Math. Control Signals Systems, 28 (2016), Art. 7, 28 pp. doi: 10.1007/s00498-015-0158-x.  Google Scholar

[32]

C. Foias and R. Temam, Determination of the solution of the Navier-Stokes equations by a set of nodal values, Mathematics of Computation, 43 (1984), 117-133.  doi: 10.1090/S0025-5718-1984-0744927-9.  Google Scholar

[33]

C. Fabre and G. Lebeau, Prolongement unique des solutions de l'equation de Stokes, Comm. Part. Diff. Eqts., 21 (1996), 573-596.  doi: 10.1080/03605309608821198.  Google Scholar

[34]

C. Fabre, Uniqueness results for Stokes Equations and their consequences in linear and nonlinear control problems, ESAIM Control Optim. Calc. Var., 1 (1995/96), 267-302.  doi: 10.1051/cocv:1996109.  Google Scholar

[35]

A. V. Fursikov, Stabilization for the 3D Navier-Stokes system by feedback boundary control, Discrete and Continuous Dynamical Systems, 10 (2004), 289-314.  doi: 10.3934/dcds.2004.10.289.  Google Scholar

[36]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Volume I: Nonlinear Steady Problems, Springer Tracts in Natural Philosophy, 38. Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[37]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Volume II: Linearized Steady Problems, Springer Tracts in Natural Philosophy, 39. Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[38]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems, Second edition, Springer Monographs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9.  Google Scholar

[39]

I. GallagherG. S. Koch and F. Planchon, A profile decomposition approach to the $L^{\infty}_t (L^3_x)$ Navier-Stokes regularity criterion, Math. Ann., 355 (2013), 1527-1559.  doi: 10.1007/s00208-012-0830-0.  Google Scholar

[40]

M. GeissertK. Götze and M. Hieber, ${L}_p$-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized newtonian fluids, Transaction of American Math Society, 365 (2013), 1393-1439.  doi: 10.1090/S0002-9947-2012-05652-2.  Google Scholar

[41]

Y. Giga, Analyticity of the semigroup generated by the Stokes operator in $L_r$ spaces, Math. Z., 178 (1981), 279-329.  doi: 10.1007/BF01214869.  Google Scholar

[42]

Y. Giga, Domains of fractional powers of the Stokes operator in $L_r$ spaces, Arch. Rational Mech. Anal., 89 (1985), 251-265.  doi: 10.1007/BF00276874.  Google Scholar

[43]

S. Guerrero, Local exact controllability to the trajectories of the Boussinesq system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 29-61.  doi: 10.1016/j.anihpc.2005.01.002.  Google Scholar

[44]

L. Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators, Classics in Mathematics, Springer, Berlin, 2007. doi: 10.1007/978-3-540-49938-1.  Google Scholar

[45]

M. Hieber and J. Saal, The Stokes equation in the $L^p$-setting: Well-posedness and regularity properties, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, (2018), 117–206. doi: 10.1007/978-3-319-13344-7_3.  Google Scholar

[46]

H. Jia and V. Šverák, Minimal $L^3$-initial data for potential Navier-Stokes singularities, SIAM J. Math. Anal., 45 (2013), 1448-1459.  doi: 10.1137/120880197.  Google Scholar

[47]

D. A. Jones and E. S. Titi, Upper bounds on the number of determining nodes, and volume elements for the Stokes equations, Indiana University Mathematics Journal, 42 (1993), 875-887.  doi: 10.1512/iumj.1993.42.42039.  Google Scholar

[48]

T. Kato, Perturbation Theory of Linear Operators, Die Grundlehren der Mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York, 1966.  Google Scholar

[49]

S. Kesavan, Topics in Functional Analysis and Applications, John Wiley & Sons, Inc., New York, 1989.  Google Scholar

[50]

H. Kim, The existence and uniqueness of very weak solutions of the stationary Boussinesq system, Nonlinear Analysis: Theory, Methods & Applications, 75 (2012), 317-330.  doi: 10.1016/j.na.2011.08.035.  Google Scholar

[51]

I. Kukavica and A. Tuffaha, Regularity of solutions to a free boundary problem of fluid-structure interaction, Indiana University Math J., 61 (2012), 1817-1859.  doi: 10.1512/iumj.2012.61.4746.  Google Scholar

[52]

P. C. Kunstmann and L. Weis, Perturbation theorems for maximal $L^p$-regularity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30 (2001), 415-435.   Google Scholar

[53]

P. C. Kunstmann and L. Weis, Maximal $L^p$-regularity for parabolic equations, Fourier multiplier theorems and $H^{\infty}$-functional calculus, Functional Analytic Methods for Evolution Equations, Lecture Notes in Math., Springer, Berlin, 1855 (2004), 65-311.  doi: 10.1007/978-3-540-44653-8_2.  Google Scholar

[54]

I. Lasiecka and R. Triggiani, Stabilization and structural assignment of Dirichlet boundary feedback parabolic equations, SIAM J. Control Optimiz., 21 (1983), 766-803.  doi: 10.1137/0321047.  Google Scholar

[55]

I. Lasiecka and R. Triggiani, Stabilization of Neumann boundary feedback parabolic equations: The case of trace in the feedback loop, Appl. Math. Optimiz., 10 (1983), 307-350.  doi: 10.1007/BF01448392.  Google Scholar

[56]

I. Lasiecka and R. Triggiani, Uniform stabilization with arbitrary decay rates of the Oseen equation by finite-dimensional tangential localized interior and boundary controls, Semigroups of Operators - Theory and Applications, Springer Proc. Math. Stat., Springer, Cham, 113 (2015), 125-154.  doi: 10.1007/978-3-319-12145-1_8.  Google Scholar

[57]

I. Lasiecka and R. Triggiani, Stabilization to an equilibrium of the Navier-Stokes equations with tangential action of feedback controllers, Nonlinear Analysis, 121 (2015), 424-446.  doi: 10.1016/j.na.2015.03.012.  Google Scholar

[58]

I. Lasiecka and R. Triggiani, Control Theory of Partial Differential Equations: Continuous and Approximation Theories. I. Abstract Parabolic Equations (680pp), Encyclopedia of Mathematics and its Applications Series, Cambridge University Press, 2000. Google Scholar

[59]

I. Lasiecka and R. Triggiani, $L_2(\Sigma)$-regularity of the boundary $\rightarrow$ boundary operator $B^*L$ for hyperbolic and Petrowski PDEs, Abstr. Appl. Anal., (2003), 1061–1139. doi: 10.1155/S1085337503305032.  Google Scholar

[60]

I. Lasiecka and R. Triggiani, The operator $B^*L$ for the wave equation with Dirichlet control, Abstract and Applied Analysis, 2004 (2004), 625-634.  doi: 10.1155/S1085337504404011.  Google Scholar

[61]

I. Lasiecka and R. Triggiani, Linear hyperbolic and Petrowski-type PDEs with continuous boundary control $\to$ boundary observation open loop map: Implications on nonlinear boundary stabilization with optimal decay rates, Sobolev Spaces in Mathematics. III, Int. Math. Ser. (N. Y.), Springer, New York, 10 (2009), 187-276.  doi: 10.1007/978-0-387-85652-0_5.  Google Scholar

[62]

I. Lasiecka and R. Triggiani, Uniform energy decay rates of Hyperbolic equations with nonlinear boundary and interior dissipation, Control Cybernet., 37 (2008), 935-969.   Google Scholar

[63]

I. Lasiecka, B. Priyasad and R. Triggiani, Uniform stabilization of Navier-Stokes equations in critical $L^q$-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls, Appl. Math. Optim., (2019), https://doi.org/10.1007/s00245-019-09607-9. Google Scholar

[64]

I. Lasiecka, B. Priyasad and R. Triggiani, Uniform stabilization of $3D$ Navier-Stokes Equations with finite dimensional tangential boundary, localized feedback controllers, submitted. Google Scholar

[65]

A.-I. Lefter, On the feedback stabilization of Boussinesq equations, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 57 (2011), 285–310. doi: 10.2478/v10157-011-0027-y.  Google Scholar

[66]

S. A. Lorca and J. L. Boldrini, Stationary solution for generalized Boussinesq models, Journal of Differential Equations, 124 (1996), 389-406.  doi: 10.1006/jdeq.1996.0016.  Google Scholar

[67]

V. N. Maslenniskova and M. Bogovskii, Elliptic boundary values in unbounded domains with noncompact and nonsmooth boundaries, Rend. Sem. Mat. Fis. Milano, 56 (1986), 125-138.  doi: 10.1007/BF02925141.  Google Scholar

[68]

A. M. Micheletti, Perturbazione dello spettro dell' operatore di Laplace in relazione ad una variazione del campo, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 26 (1972), 151-169.   Google Scholar

[69]

H. Morimoto, On the existence of weak solutions of equation of natural convection, J. Fac. Sci. Univ. Tokyo Sec. IA Math., 36 (1989), 87-102.   Google Scholar

[70]

P. Mucha and W. Zajaczkowski, On the existence for the Cauchy-Neumann problem for the Stokes system in $L_p $ framework, Studia Mathematica, 143 (2000), 75-101.  doi: 10.4064/sm-143-1-75-101.  Google Scholar

[71]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[72]

J. Prüss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Monographs in Mathematics, 105. Birkhäuser/Springer, [Cham], 2016. doi: 10.1007/978-3-319-27698-4.  Google Scholar

[73]

J. Prüss and R. Schaubelt, Solvability and maximal regularity of parabolic equations with coefficients continuous in time, J. Math. Anal. Appl., 256 (2001), 405-430.  doi: 10.1006/jmaa.2000.7247.  Google Scholar

[74]

M. RamaswamyJ.-P. Raymond and A. Roy, Boundary feedback stabilization of the Boussinesq system with mixed boundary conditions, J. Differential Equations, 266 (2019), 4268-4304.  doi: 10.1016/j.jde.2018.09.038.  Google Scholar

[75]

W. Rusin and V. Šverak, Minimal initial data for potential Navier-Stokes singularities, J. Funct. Anal., 260 (2011), 879–891, https://arXiv.org/abs/0911.0500. doi: 10.1016/j.jfa.2010.09.009.  Google Scholar

[76]

J. Saal, Maximal regularity for the Stokes system on non-cylindrical space-time domains, J. Math. Soc. Japan, 58 (2006), 617-641.  doi: 10.2969/jmsj/1156342030.  Google Scholar

[77]

M. Santos da RochaM. A. Rojas-Medar and M. D. Rojas-Medar, On the existence and uniqueness of the stationary solution to equations of natural convection with boundary data in $L^2$, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 609-621.  doi: 10.1098/rspa.2002.1036.  Google Scholar

[78]

Y. Shibata and S. Shimizu, On the $L^p-L^q$ maximal regularity of the Neumann problem for the Stokes equations in a bounded domain, Asymptotic Analysis and Singularities - Hyperbolic and Dispersive PDEs and Fluid Mechanics, Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, 47 (2007), 349-362.  doi: 10.2969/aspm/04710349.  Google Scholar

[79]

V. A. Solonnikov, Estimates of the solutions of a nonstationary linearized system of Navier- Stokes equations, A.M.S. Translations, 75 (1968), 1-116.   Google Scholar

[80]

V. A. Solonnikov, Estimates for solutions of non-stationary Navier-Stokes equations, J. Sov. Math., 8 (1977), 467-529.   Google Scholar

[81]

A. E. Taylor and D. Lay, Introduction to Functional Analysis, Second edition, John Wiley & Sons, New York-Chichester-Brisbane, 1980.  Google Scholar

[82]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2. North-Holland Publishing Co., Amsterdam-New York, 1979.  Google Scholar

[83]

R. Triggiani, On the stabilizability problem of Banach spaces, J. Math. Anal. Appl., 52 (1975), 383-403.  doi: 10.1016/0022-247X(75)90067-0.  Google Scholar

[84]

R. Triggiani, Boundary feedback stability of parabolic equations, Appl. Math. Optimiz., 6 (1975), 201-220.  doi: 10.1007/BF01442895.  Google Scholar

[85]

R. Triggiani, Unique Continuation of the boundary over-determined Stokes and Oseen eigenproblems, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 645-677.  doi: 10.3934/dcdss.2009.2.645.  Google Scholar

[86]

R. Triggiani, Linear independence of boundary traces of eigenfunctions of elliptic and Stokes Operators and applications, Appl. Math. (Warsaw), 35 (2008), 481-512.  doi: 10.4064/am35-4-6.  Google Scholar

[87]

R. Triggiani, Unique continuation from an arbitrary interior subdomain of the variable-coefficient Oseen equation, Nonlinear Analysis, 71 (2009), 4967-4976.  doi: 10.1016/j.na.2009.03.073.  Google Scholar

[88]

R. Triggiani and X. Wan, Unique continuation properties of over-determined static Boussinesq problems with applications to uniform stabilization of dynamic Boussinesq systems, submitted. Google Scholar

[89]

K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math., 98 (1972), 1059-1078.  doi: 10.2307/2374041.  Google Scholar

[90]

E. J. Villamizar-RoaM. A. Rodríguez-Bellido and M. A. Rojas-Medar, The Boussinesq system with mixed nonsmooth boundary data, C. R. Math. Acad. Sci. Paris, 343 (2006), 191-196.  doi: 10.1016/j.crma.2006.06.011.  Google Scholar

[91]

W. von Whal, The Equations of Navier-Stokes and Abstract Parabolic Equations, Springer Fachmedien Wiesbaden, Vieweg+Teubner Verlag, 1985. doi: 10.1007/978-3-663-13911-9.  Google Scholar

[92]

G. S. Wang, Stabilization of the Boussinesq equation via internal feedback controls, Nonlinear Analysis: Theory, Methods & Applications, 52 (2003), 485-506.  doi: 10.1016/S0362-546X(02)00114-1.  Google Scholar

[93]

L. Weis, A new approach to maximal $L_p$-regularity, Evolution Equations and Their Applications in Physical and Life Sciences, Lecture Notes in Pure and Appl. Math., Dekker, New York, 215 (2001), 195-214.   Google Scholar

[94]

J. Zabczyk, Mathematical Control Theory: An Introduction, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992.  Google Scholar

show all references

References:
[1]

H. Amann, Linear and Quasilinear Parabolic Problems: Volume I: Abstract Linear Theory, Monographs in Mathematics, 89. Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[2]

H. Amann, On the strong solvability of the Navier-Stokes equations, J. Math. Fluid Mech., 2 (2000), 16-98.  doi: 10.1007/s000210050018.  Google Scholar

[3]

P. Acevedo Tapia, $L^p$-Theory for the Boussinesq System, Ph.D theis, Universidad de Chille, Faculatad de Ciencias Fisicas y Mathematicas, Departamento de Ingeniearia Mathematica, Santiago de Chille, 2015. Google Scholar

[4]

P. AcevedoC. Amrouche and C. Conca, Boussinesq system with non-homogeneous boundary conditions, Appl. Math. Lett., 53 (2016), 39-44.  doi: 10.1016/j.aml.2015.09.015.  Google Scholar

[5]

P. AcervedoC. Amrouche and C. Conca, $L^p$ theory for Boussinesq system with Dirichlet boundary conditions, Appl. Anal., 98 (2019), 272-294.  doi: 10.1080/00036811.2018.1530762.  Google Scholar

[6]

A. V. Balakrishnan, Applied Functional Analysis, Second edition, Applications of Mathematics, 3. Springer-Verlag, New York-Berlin, 1981.  Google Scholar

[7]

M. Badra, Abstract settings for stabilization of nonlinear parabolic systems with Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control, Discrete and Continuous Dynamical Systems, 32 (2012), 1169-1208.  doi: 10.3934/dcds.2012.32.1169.  Google Scholar

[8]

V. Barbu,, Stabilization of Navier-Stokes flows, Springer, 2011. doi: 10.1007/978-0-85729-043-4.  Google Scholar

[9]

R. W. Brockett, Asymptotic and feedback stabilization, Differential Geometric Control Theory, Birkhäuser, Basel, (1983), 181–191. Google Scholar

[10]

G. Basile and G. Marro, Controlled and Conditioned Invariant in Linear System Theory, Prentice Hall, Inc., Englewood Cliffs, NJ, 1992.  Google Scholar

[11]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., 53 (2004), 1443-1494.  doi: 10.1512/iumj.2004.53.2445.  Google Scholar

[12]

V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Mem. Amer. Math. Soc., 181 (2006), x+128 pp. doi: 10.1090/memo/0852.  Google Scholar

[13]

V. BarbuI. Lasiecka and R. Triggiani, Abstract settings fr tangential boundary stabilization of Naiver Stokes equations by high-and low-gain feedback controllers, Nonlinear Analysis, 64 (2006), 2704-2746.  doi: 10.1016/j.na.2005.09.012.  Google Scholar

[14]

V. BarbuI. Lasiecka and R. Triggiani, Local exponential stabilization strategies of the Navier Stokes equations, $d = 2, 3$, via feedback stabilization of its linearization, Optimal of Coupled Systems of Partial Differential Equations, Internat. Ser. Numer. Math., Birkhäuser, Basel, 155 (2007), 13-46.  doi: 10.1007/978-3-7643-7721-2_2.  Google Scholar

[15]

J. A. Burns and W. Hu, Approximation methods for boundary control of the Boussinesq equations, 52nd IEEE Conference on Decision and Control. IEEE, (2013), 454–459. Google Scholar

[16]

J. A. BurnsX. M. He and W. W. Hu, Feedback stabilization of a thermal fluid system with mixed boundary control, Computers and Mathematics with Applications, 71 (2016), 2170-2191.  doi: 10.1016/j.camwa.2016.01.011.  Google Scholar

[17]

E. Fernández-CaraS. GuerreroO. Yu. Imanuvilov and J.-P. Puel, Some controllability results of the $N$ dimensional Navier-Stokes and Boussinesq systems with $N-1$ sacalar controls, SIAM J. Control and Optim., 45 (2006), 146-173.  doi: 10.1137/04061965X.  Google Scholar

[18]

C. T. Chen, Linear Systems Theory and Design, Oxford University Press, 1984, 334 pp. Google Scholar

[19]

P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988.  Google Scholar

[20]

J.-M. Coron, On the controllability of the 2-d incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Control Optim. Calc. Var., 1 (1995/96), 35-75.  doi: 10.1051/cocv:1996102.  Google Scholar

[21]

J.-M. Coron, On the controllability of $2$-d incompressible perfect fluids, J. Math. Pures Appl. (9), 75 (1996), 155-188.   Google Scholar

[22]

J.-M. Coron and S. Guerrero, Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component, J. Math. Pures Appl. (9), 92 (2009), 528-545.  doi: 10.1016/j.matpur.2009.05.015.  Google Scholar

[23]

J.-M. Coron and S. Guerrero, Null controllability of the $N$ dimensional Stikes system with $N-1$ scalar controls, J. Differential Equations, 246 (2009), 2908-2921.  doi: 10.1016/j.jde.2008.10.019.  Google Scholar

[24]

J.-M. Coron and P. Lissy, Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components, Inv. Math., 198 (2014), 833-880.  doi: 10.1007/s00222-014-0512-5.  Google Scholar

[25]

R. Danchin and P. Mucha, Critical functional framework and maximal regularity in action on systems of incompressible flows, Mém. Soc. Math. Fr. (N.S.), (2015). doi: 10.24033/msmf.451.  Google Scholar

[26]

L. De Simon, Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rendiconti del Seminario Matematico della Universita di Padova, 34 (1964), 205-223.   Google Scholar

[27]

G. Dore, Maximal regularity in $L^p$ spaces for an abstract Cauchy problem, Advances in Differential Equations, 5 (2000), 293-322.   Google Scholar

[28]

L. EscauriazaG. A. Seregin and V. Šverák, $L_{3, \infty}$-solutions of Navier-Stokes equations and backward uniqueness, Math. Surveys, 58 (2003), 211-250.  doi: 10.1070/RM2003v058n02ABEH000609.  Google Scholar

[29]

E. FabesO. Mendez and M. Mitrea, Boundary layers of Sobolev-Besov spaces and Poisson's equations for the Laplacian for the Lipschitz domains, J. Func. Anal., 159 (1998), 323-368.  doi: 10.1006/jfan.1998.3316.  Google Scholar

[30]

E. Fernandez-CaraS. GuerreroO. Y. Imanuvilov and J.-P. Puel, Some controllability results for the $N$-dimensional Navier-Stokes and Boussinesq systems with $N-1$ scalar controls, SIAM J. Control Optim., 45 (2006), 146-173.  doi: 10.1137/04061965X.  Google Scholar

[31]

E. Fernandez-Cara, M. Santos and D. A. Souza, Boundary controllability of incompressibel Euler fluids with Boussinesq heat effects, Math. Control Signals Systems, 28 (2016), Art. 7, 28 pp. doi: 10.1007/s00498-015-0158-x.  Google Scholar

[32]

C. Foias and R. Temam, Determination of the solution of the Navier-Stokes equations by a set of nodal values, Mathematics of Computation, 43 (1984), 117-133.  doi: 10.1090/S0025-5718-1984-0744927-9.  Google Scholar

[33]

C. Fabre and G. Lebeau, Prolongement unique des solutions de l'equation de Stokes, Comm. Part. Diff. Eqts., 21 (1996), 573-596.  doi: 10.1080/03605309608821198.  Google Scholar

[34]

C. Fabre, Uniqueness results for Stokes Equations and their consequences in linear and nonlinear control problems, ESAIM Control Optim. Calc. Var., 1 (1995/96), 267-302.  doi: 10.1051/cocv:1996109.  Google Scholar

[35]

A. V. Fursikov, Stabilization for the 3D Navier-Stokes system by feedback boundary control, Discrete and Continuous Dynamical Systems, 10 (2004), 289-314.  doi: 10.3934/dcds.2004.10.289.  Google Scholar

[36]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Volume I: Nonlinear Steady Problems, Springer Tracts in Natural Philosophy, 38. Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[37]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Volume II: Linearized Steady Problems, Springer Tracts in Natural Philosophy, 39. Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[38]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems, Second edition, Springer Monographs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9.  Google Scholar

[39]

I. GallagherG. S. Koch and F. Planchon, A profile decomposition approach to the $L^{\infty}_t (L^3_x)$ Navier-Stokes regularity criterion, Math. Ann., 355 (2013), 1527-1559.  doi: 10.1007/s00208-012-0830-0.  Google Scholar

[40]

M. GeissertK. Götze and M. Hieber, ${L}_p$-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized newtonian fluids, Transaction of American Math Society, 365 (2013), 1393-1439.  doi: 10.1090/S0002-9947-2012-05652-2.  Google Scholar

[41]

Y. Giga, Analyticity of the semigroup generated by the Stokes operator in $L_r$ spaces, Math. Z., 178 (1981), 279-329.  doi: 10.1007/BF01214869.  Google Scholar

[42]

Y. Giga, Domains of fractional powers of the Stokes operator in $L_r$ spaces, Arch. Rational Mech. Anal., 89 (1985), 251-265.  doi: 10.1007/BF00276874.  Google Scholar

[43]

S. Guerrero, Local exact controllability to the trajectories of the Boussinesq system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 29-61.  doi: 10.1016/j.anihpc.2005.01.002.  Google Scholar

[44]

L. Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators, Classics in Mathematics, Springer, Berlin, 2007. doi: 10.1007/978-3-540-49938-1.  Google Scholar

[45]

M. Hieber and J. Saal, The Stokes equation in the $L^p$-setting: Well-posedness and regularity properties, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, (2018), 117–206. doi: 10.1007/978-3-319-13344-7_3.  Google Scholar

[46]

H. Jia and V. Šverák, Minimal $L^3$-initial data for potential Navier-Stokes singularities, SIAM J. Math. Anal., 45 (2013), 1448-1459.  doi: 10.1137/120880197.  Google Scholar

[47]

D. A. Jones and E. S. Titi, Upper bounds on the number of determining nodes, and volume elements for the Stokes equations, Indiana University Mathematics Journal, 42 (1993), 875-887.  doi: 10.1512/iumj.1993.42.42039.  Google Scholar

[48]

T. Kato, Perturbation Theory of Linear Operators, Die Grundlehren der Mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York, 1966.  Google Scholar

[49]

S. Kesavan, Topics in Functional Analysis and Applications, John Wiley & Sons, Inc., New York, 1989.  Google Scholar

[50]

H. Kim, The existence and uniqueness of very weak solutions of the stationary Boussinesq system, Nonlinear Analysis: Theory, Methods & Applications, 75 (2012), 317-330.  doi: 10.1016/j.na.2011.08.035.  Google Scholar

[51]

I. Kukavica and A. Tuffaha, Regularity of solutions to a free boundary problem of fluid-structure interaction, Indiana University Math J., 61 (2012), 1817-1859.  doi: 10.1512/iumj.2012.61.4746.  Google Scholar

[52]

P. C. Kunstmann and L. Weis, Perturbation theorems for maximal $L^p$-regularity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30 (2001), 415-435.   Google Scholar

[53]

P. C. Kunstmann and L. Weis, Maximal $L^p$-regularity for parabolic equations, Fourier multiplier theorems and $H^{\infty}$-functional calculus, Functional Analytic Methods for Evolution Equations, Lecture Notes in Math., Springer, Berlin, 1855 (2004), 65-311.  doi: 10.1007/978-3-540-44653-8_2.  Google Scholar

[54]

I. Lasiecka and R. Triggiani, Stabilization and structural assignment of Dirichlet boundary feedback parabolic equations, SIAM J. Control Optimiz., 21 (1983), 766-803.  doi: 10.1137/0321047.  Google Scholar

[55]

I. Lasiecka and R. Triggiani, Stabilization of Neumann boundary feedback parabolic equations: The case of trace in the feedback loop, Appl. Math. Optimiz., 10 (1983), 307-350.  doi: 10.1007/BF01448392.  Google Scholar

[56]

I. Lasiecka and R. Triggiani, Uniform stabilization with arbitrary decay rates of the Oseen equation by finite-dimensional tangential localized interior and boundary controls, Semigroups of Operators - Theory and Applications, Springer Proc. Math. Stat., Springer, Cham, 113 (2015), 125-154.  doi: 10.1007/978-3-319-12145-1_8.  Google Scholar

[57]

I. Lasiecka and R. Triggiani, Stabilization to an equilibrium of the Navier-Stokes equations with tangential action of feedback controllers, Nonlinear Analysis, 121 (2015), 424-446.  doi: 10.1016/j.na.2015.03.012.  Google Scholar

[58]

I. Lasiecka and R. Triggiani, Control Theory of Partial Differential Equations: Continuous and Approximation Theories. I. Abstract Parabolic Equations (680pp), Encyclopedia of Mathematics and its Applications Series, Cambridge University Press, 2000. Google Scholar

[59]

I. Lasiecka and R. Triggiani, $L_2(\Sigma)$-regularity of the boundary $\rightarrow$ boundary operator $B^*L$ for hyperbolic and Petrowski PDEs, Abstr. Appl. Anal., (2003), 1061–1139. doi: 10.1155/S1085337503305032.  Google Scholar

[60]

I. Lasiecka and R. Triggiani, The operator $B^*L$ for the wave equation with Dirichlet control, Abstract and Applied Analysis, 2004 (2004), 625-634.  doi: 10.1155/S1085337504404011.  Google Scholar

[61]

I. Lasiecka and R. Triggiani, Linear hyperbolic and Petrowski-type PDEs with continuous boundary control $\to$ boundary observation open loop map: Implications on nonlinear boundary stabilization with optimal decay rates, Sobolev Spaces in Mathematics. III, Int. Math. Ser. (N. Y.), Springer, New York, 10 (2009), 187-276.  doi: 10.1007/978-0-387-85652-0_5.  Google Scholar

[62]

I. Lasiecka and R. Triggiani, Uniform energy decay rates of Hyperbolic equations with nonlinear boundary and interior dissipation, Control Cybernet., 37 (2008), 935-969.   Google Scholar

[63]

I. Lasiecka, B. Priyasad and R. Triggiani, Uniform stabilization of Navier-Stokes equations in critical $L^q$-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls, Appl. Math. Optim., (2019), https://doi.org/10.1007/s00245-019-09607-9. Google Scholar

[64]

I. Lasiecka, B. Priyasad and R. Triggiani, Uniform stabilization of $3D$ Navier-Stokes Equations with finite dimensional tangential boundary, localized feedback controllers, submitted. Google Scholar

[65]

A.-I. Lefter, On the feedback stabilization of Boussinesq equations, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 57 (2011), 285–310. doi: 10.2478/v10157-011-0027-y.  Google Scholar

[66]

S. A. Lorca and J. L. Boldrini, Stationary solution for generalized Boussinesq models, Journal of Differential Equations, 124 (1996), 389-406.  doi: 10.1006/jdeq.1996.0016.  Google Scholar

[67]

V. N. Maslenniskova and M. Bogovskii, Elliptic boundary values in unbounded domains with noncompact and nonsmooth boundaries, Rend. Sem. Mat. Fis. Milano, 56 (1986), 125-138.  doi: 10.1007/BF02925141.  Google Scholar

[68]

A. M. Micheletti, Perturbazione dello spettro dell' operatore di Laplace in relazione ad una variazione del campo, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 26 (1972), 151-169.   Google Scholar

[69]

H. Morimoto, On the existence of weak solutions of equation of natural convection, J. Fac. Sci. Univ. Tokyo Sec. IA Math., 36 (1989), 87-102.   Google Scholar

[70]

P. Mucha and W. Zajaczkowski, On the existence for the Cauchy-Neumann problem for the Stokes system in $L_p $ framework, Studia Mathematica, 143 (2000), 75-101.  doi: 10.4064/sm-143-1-75-101.  Google Scholar

[71]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[72]

J. Prüss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Monographs in Mathematics, 105. Birkhäuser/Springer, [Cham], 2016. doi: 10.1007/978-3-319-27698-4.  Google Scholar

[73]

J. Prüss and R. Schaubelt, Solvability and maximal regularity of parabolic equations with coefficients continuous in time, J. Math. Anal. Appl., 256 (2001), 405-430.  doi: 10.1006/jmaa.2000.7247.  Google Scholar

[74]

M. RamaswamyJ.-P. Raymond and A. Roy, Boundary feedback stabilization of the Boussinesq system with mixed boundary conditions, J. Differential Equations, 266 (2019), 4268-4304.  doi: 10.1016/j.jde.2018.09.038.  Google Scholar

[75]

W. Rusin and V. Šverak, Minimal initial data for potential Navier-Stokes singularities, J. Funct. Anal., 260 (2011), 879–891, https://arXiv.org/abs/0911.0500. doi: 10.1016/j.jfa.2010.09.009.  Google Scholar

[76]

J. Saal, Maximal regularity for the Stokes system on non-cylindrical space-time domains, J. Math. Soc. Japan, 58 (2006), 617-641.  doi: 10.2969/jmsj/1156342030.  Google Scholar

[77]

M. Santos da RochaM. A. Rojas-Medar and M. D. Rojas-Medar, On the existence and uniqueness of the stationary solution to equations of natural convection with boundary data in $L^2$, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 609-621.  doi: 10.1098/rspa.2002.1036.  Google Scholar

[78]

Y. Shibata and S. Shimizu, On the $L^p-L^q$ maximal regularity of the Neumann problem for the Stokes equations in a bounded domain, Asymptotic Analysis and Singularities - Hyperbolic and Dispersive PDEs and Fluid Mechanics, Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, 47 (2007), 349-362.  doi: 10.2969/aspm/04710349.  Google Scholar

[79]

V. A. Solonnikov, Estimates of the solutions of a nonstationary linearized system of Navier- Stokes equations, A.M.S. Translations, 75 (1968), 1-116.   Google Scholar

[80]

V. A. Solonnikov, Estimates for solutions of non-stationary Navier-Stokes equations, J. Sov. Math., 8 (1977), 467-529.   Google Scholar

[81]

A. E. Taylor and D. Lay, Introduction to Functional Analysis, Second edition, John Wiley & Sons, New York-Chichester-Brisbane, 1980.  Google Scholar

[82]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2. North-Holland Publishing Co., Amsterdam-New York, 1979.  Google Scholar

[83]

R. Triggiani, On the stabilizability problem of Banach spaces, J. Math. Anal. Appl., 52 (1975), 383-403.  doi: 10.1016/0022-247X(75)90067-0.  Google Scholar

[84]

R. Triggiani, Boundary feedback stability of parabolic equations, Appl. Math. Optimiz., 6 (1975), 201-220.  doi: 10.1007/BF01442895.  Google Scholar

[85]

R. Triggiani, Unique Continuation of the boundary over-determined Stokes and Oseen eigenproblems, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 645-677.  doi: 10.3934/dcdss.2009.2.645.  Google Scholar

[86]

R. Triggiani, Linear independence of boundary traces of eigenfunctions of elliptic and Stokes Operators and applications, Appl. Math. (Warsaw), 35 (2008), 481-512.  doi: 10.4064/am35-4-6.  Google Scholar

[87]

R. Triggiani, Unique continuation from an arbitrary interior subdomain of the variable-coefficient Oseen equation, Nonlinear Analysis, 71 (2009), 4967-4976.  doi: 10.1016/j.na.2009.03.073.  Google Scholar

[88]

R. Triggiani and X. Wan, Unique continuation properties of over-determined static Boussinesq problems with applications to uniform stabilization of dynamic Boussinesq systems, submitted. Google Scholar

[89]

K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math., 98 (1972), 1059-1078.  doi: 10.2307/2374041.  Google Scholar

[90]

E. J. Villamizar-RoaM. A. Rodríguez-Bellido and M. A. Rojas-Medar, The Boussinesq system with mixed nonsmooth boundary data, C. R. Math. Acad. Sci. Paris, 343 (2006), 191-196.  doi: 10.1016/j.crma.2006.06.011.  Google Scholar

[91]

W. von Whal, The Equations of Navier-Stokes and Abstract Parabolic Equations, Springer Fachmedien Wiesbaden, Vieweg+Teubner Verlag, 1985. doi: 10.1007/978-3-663-13911-9.  Google Scholar

[92]

G. S. Wang, Stabilization of the Boussinesq equation via internal feedback controls, Nonlinear Analysis: Theory, Methods & Applications, 52 (2003), 485-506.  doi: 10.1016/S0362-546X(02)00114-1.  Google Scholar

[93]

L. Weis, A new approach to maximal $L_p$-regularity, Evolution Equations and Their Applications in Physical and Life Sciences, Lecture Notes in Pure and Appl. Math., Dekker, New York, 215 (2001), 195-214.   Google Scholar

[94]

J. Zabczyk, Mathematical Control Theory: An Introduction, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992.  Google Scholar

[1]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[2]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[3]

Yubiao Liu, Chunguo Zhang, Tehuan Chen. Stabilization of 2-d Mindlin-Timoshenko plates with localized acoustic boundary feedback. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021006

[4]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[5]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[6]

Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027

[7]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[8]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[9]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[10]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[11]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[12]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[13]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[14]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[15]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[16]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[17]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[18]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[19]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[20]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

2019 Impact Factor: 1.27

Article outline

[Back to Top]