doi: 10.3934/dcdsb.2020193

The nonstationary flows of micropolar fluids with thermal convection: An iterative approach

1. 

Departamento de Matemática, Universidade Federal de Pernambuco, Recife, PE, Brazil

2. 

Departamento de Matemática, Universidad de Tarapacá, Arica, Chile

* Corresponding author: miguel@dmat.ufpe.br

Received  October 2019 Revised  January 2020 Published  June 2020

Fund Project: This work was partially supported by CAPES-PRINT, 88887.311962/2018-00.
Charles Amorim was supported by CNPQ/Brazil

We consider a problem that describes the motion of a viscous incompressible and heat-conducting micropolar fluids in a bounded domain $ \Omega \subset \mathbb{R}^3 $. We use an iterative method to analyze the existence, uniqueness, and regularity of the solutions. We also determine the convergence rates in several norms.

Citation: Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020193
References:
[1]

C. Amrouche and V. Girault, On the existence and regularity of the solution of Stokes problem in arbitrary dimension, Proc. Japan Acad. Ser. A Math. Sci., 67 (1991), 171-175.  doi: 10.3792/pjaa.67.171.  Google Scholar

[2]

J. Boussinesq, Théorie Analytique de la Chaleur II, Gauthier-Villars, 1903. Google Scholar

[3]

A. C. Eringen, Simple microfluids, Internat. J. Engrg. Sci., 2 (1964), 205-217.  doi: 10.1016/0020-7225(64)90005-9.  Google Scholar

[4]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.  doi: 10.1512/iumj.1967.16.16001.  Google Scholar

[5]

D. D. Joseph, Stability of Fluid Motions. I, Springer Tracts in Natural Philosophy, 27, Springer-Verlag, Berlin-New York, 1976. doi: 10.1007/978-3-642-80991-0.  Google Scholar

[6]

Y. Kagei and M. Skowron, Nonstationary flows of nonsymmetric fluids with thermal convection, Hiroshima Math. J., 23 (1993), 343-363.  doi: 10.32917/hmj/1206128257.  Google Scholar

[7]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Mathematics and its Applications, 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969.  Google Scholar

[8]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uralćeva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1968.  Google Scholar

[9]

J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéares, Dunod; Gauthier-Villars, Paris, 1969.  Google Scholar

[10]

G. Łukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 13 (1989), 105-120.   Google Scholar

[11]

G. Łukaszewicz and W. Waluś, On stationary flows of asymmetric fluids with heat convection, Math. Methods Appl. Sci., 11 (1989), 343-351.  doi: 10.1002/mma.1670110304.  Google Scholar

[12]

G. Łukaszewicz, Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[13]

L. G. Petrosyan, Some problems of mechanics of fluids with antisymmetric stress tensor, Izd. Erevan Univ., (1984). Google Scholar

[14]

M. A. Rojas-Medar and E. E. Ortega-Torres, The equations of a viscous asymmetric fluid: An interactive approach, ZAMM Z. Angew. Math. Mech., 85 (2005), 471-489.  doi: 10.1002/zamm.199910189.  Google Scholar

[15]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solution, Math. Nachr., 188 (1997), 301-319.  doi: 10.1002/mana.19971880116.  Google Scholar

[16]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[17]

A. G. Zarubin, An iterative method for the approximate solution of an initial-boundary value problem for heat convection equations, Comput. Math. Math. Phys., 33 (1993), 1077-1085.   Google Scholar

show all references

References:
[1]

C. Amrouche and V. Girault, On the existence and regularity of the solution of Stokes problem in arbitrary dimension, Proc. Japan Acad. Ser. A Math. Sci., 67 (1991), 171-175.  doi: 10.3792/pjaa.67.171.  Google Scholar

[2]

J. Boussinesq, Théorie Analytique de la Chaleur II, Gauthier-Villars, 1903. Google Scholar

[3]

A. C. Eringen, Simple microfluids, Internat. J. Engrg. Sci., 2 (1964), 205-217.  doi: 10.1016/0020-7225(64)90005-9.  Google Scholar

[4]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.  doi: 10.1512/iumj.1967.16.16001.  Google Scholar

[5]

D. D. Joseph, Stability of Fluid Motions. I, Springer Tracts in Natural Philosophy, 27, Springer-Verlag, Berlin-New York, 1976. doi: 10.1007/978-3-642-80991-0.  Google Scholar

[6]

Y. Kagei and M. Skowron, Nonstationary flows of nonsymmetric fluids with thermal convection, Hiroshima Math. J., 23 (1993), 343-363.  doi: 10.32917/hmj/1206128257.  Google Scholar

[7]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Mathematics and its Applications, 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969.  Google Scholar

[8]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uralćeva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1968.  Google Scholar

[9]

J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéares, Dunod; Gauthier-Villars, Paris, 1969.  Google Scholar

[10]

G. Łukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 13 (1989), 105-120.   Google Scholar

[11]

G. Łukaszewicz and W. Waluś, On stationary flows of asymmetric fluids with heat convection, Math. Methods Appl. Sci., 11 (1989), 343-351.  doi: 10.1002/mma.1670110304.  Google Scholar

[12]

G. Łukaszewicz, Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[13]

L. G. Petrosyan, Some problems of mechanics of fluids with antisymmetric stress tensor, Izd. Erevan Univ., (1984). Google Scholar

[14]

M. A. Rojas-Medar and E. E. Ortega-Torres, The equations of a viscous asymmetric fluid: An interactive approach, ZAMM Z. Angew. Math. Mech., 85 (2005), 471-489.  doi: 10.1002/zamm.199910189.  Google Scholar

[15]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solution, Math. Nachr., 188 (1997), 301-319.  doi: 10.1002/mana.19971880116.  Google Scholar

[16]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[17]

A. G. Zarubin, An iterative method for the approximate solution of an initial-boundary value problem for heat convection equations, Comput. Math. Math. Phys., 33 (1993), 1077-1085.   Google Scholar

[1]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[2]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[3]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[4]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[5]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[6]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[7]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[8]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[9]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[10]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[11]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[12]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[13]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[14]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[15]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[16]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[17]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[18]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[19]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[20]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (50)
  • HTML views (178)
  • Cited by (0)

[Back to Top]