-
Previous Article
A blow-up result for the chemotaxis system with nonlinear signal production and logistic source
- DCDS-B Home
- This Issue
-
Next Article
A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale
The nonstationary flows of micropolar fluids with thermal convection: An iterative approach
1. | Departamento de Matemática, Universidade Federal de Pernambuco, Recife, PE, Brazil |
2. | Departamento de Matemática, Universidad de Tarapacá, Arica, Chile |
We consider a problem that describes the motion of a viscous incompressible and heat-conducting micropolar fluids in a bounded domain $ \Omega \subset \mathbb{R}^3 $. We use an iterative method to analyze the existence, uniqueness, and regularity of the solutions. We also determine the convergence rates in several norms.
References:
[1] |
C. Amrouche and V. Girault,
On the existence and regularity of the solution of Stokes problem in arbitrary dimension, Proc. Japan Acad. Ser. A Math. Sci., 67 (1991), 171-175.
doi: 10.3792/pjaa.67.171. |
[2] |
J. Boussinesq, Théorie Analytique de la Chaleur II, Gauthier-Villars, 1903. |
[3] |
A. C. Eringen,
Simple microfluids, Internat. J. Engrg. Sci., 2 (1964), 205-217.
doi: 10.1016/0020-7225(64)90005-9. |
[4] |
A. C. Eringen,
Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.
doi: 10.1512/iumj.1967.16.16001. |
[5] |
D. D. Joseph, Stability of Fluid Motions. I, Springer Tracts in Natural Philosophy, 27, Springer-Verlag, Berlin-New York, 1976.
doi: 10.1007/978-3-642-80991-0. |
[6] |
Y. Kagei and M. Skowron,
Nonstationary flows of nonsymmetric fluids with thermal convection, Hiroshima Math. J., 23 (1993), 343-363.
doi: 10.32917/hmj/1206128257. |
[7] |
O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Mathematics and its Applications, 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969. |
[8] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uralćeva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1968. |
[9] |
J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéares, Dunod; Gauthier-Villars, Paris, 1969. |
[10] |
G. Łukaszewicz,
On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 13 (1989), 105-120.
|
[11] |
G. Łukaszewicz and W. Waluś,
On stationary flows of asymmetric fluids with heat convection, Math. Methods Appl. Sci., 11 (1989), 343-351.
doi: 10.1002/mma.1670110304. |
[12] |
G. Łukaszewicz, Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1999.
doi: 10.1007/978-1-4612-0641-5. |
[13] |
L. G. Petrosyan, Some problems of mechanics of fluids with antisymmetric stress tensor, Izd. Erevan Univ., (1984). |
[14] |
M. A. Rojas-Medar and E. E. Ortega-Torres,
The equations of a viscous asymmetric fluid: An interactive approach, ZAMM Z. Angew. Math. Mech., 85 (2005), 471-489.
doi: 10.1002/zamm.199910189. |
[15] |
M. A. Rojas-Medar,
Magneto-micropolar fluid motion: Existence and uniqueness of strong solution, Math. Nachr., 188 (1997), 301-319.
doi: 10.1002/mana.19971880116. |
[16] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. |
[17] |
A. G. Zarubin,
An iterative method for the approximate solution of an initial-boundary value problem for heat convection equations, Comput. Math. Math. Phys., 33 (1993), 1077-1085.
|
show all references
References:
[1] |
C. Amrouche and V. Girault,
On the existence and regularity of the solution of Stokes problem in arbitrary dimension, Proc. Japan Acad. Ser. A Math. Sci., 67 (1991), 171-175.
doi: 10.3792/pjaa.67.171. |
[2] |
J. Boussinesq, Théorie Analytique de la Chaleur II, Gauthier-Villars, 1903. |
[3] |
A. C. Eringen,
Simple microfluids, Internat. J. Engrg. Sci., 2 (1964), 205-217.
doi: 10.1016/0020-7225(64)90005-9. |
[4] |
A. C. Eringen,
Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.
doi: 10.1512/iumj.1967.16.16001. |
[5] |
D. D. Joseph, Stability of Fluid Motions. I, Springer Tracts in Natural Philosophy, 27, Springer-Verlag, Berlin-New York, 1976.
doi: 10.1007/978-3-642-80991-0. |
[6] |
Y. Kagei and M. Skowron,
Nonstationary flows of nonsymmetric fluids with thermal convection, Hiroshima Math. J., 23 (1993), 343-363.
doi: 10.32917/hmj/1206128257. |
[7] |
O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Mathematics and its Applications, 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969. |
[8] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uralćeva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1968. |
[9] |
J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéares, Dunod; Gauthier-Villars, Paris, 1969. |
[10] |
G. Łukaszewicz,
On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 13 (1989), 105-120.
|
[11] |
G. Łukaszewicz and W. Waluś,
On stationary flows of asymmetric fluids with heat convection, Math. Methods Appl. Sci., 11 (1989), 343-351.
doi: 10.1002/mma.1670110304. |
[12] |
G. Łukaszewicz, Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1999.
doi: 10.1007/978-1-4612-0641-5. |
[13] |
L. G. Petrosyan, Some problems of mechanics of fluids with antisymmetric stress tensor, Izd. Erevan Univ., (1984). |
[14] |
M. A. Rojas-Medar and E. E. Ortega-Torres,
The equations of a viscous asymmetric fluid: An interactive approach, ZAMM Z. Angew. Math. Mech., 85 (2005), 471-489.
doi: 10.1002/zamm.199910189. |
[15] |
M. A. Rojas-Medar,
Magneto-micropolar fluid motion: Existence and uniqueness of strong solution, Math. Nachr., 188 (1997), 301-319.
doi: 10.1002/mana.19971880116. |
[16] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. |
[17] |
A. G. Zarubin,
An iterative method for the approximate solution of an initial-boundary value problem for heat convection equations, Comput. Math. Math. Phys., 33 (1993), 1077-1085.
|
[1] |
Wilhelm Schlag. Regularity and convergence rates for the Lyapunov exponents of linear cocycles. Journal of Modern Dynamics, 2013, 7 (4) : 619-637. doi: 10.3934/jmd.2013.7.619 |
[2] |
Zhong Tan, Qiuju Xu, Huaqiao Wang. Global existence and convergence rates for the compressible magnetohydrodynamic equations without heat conductivity. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5083-5105. doi: 10.3934/dcds.2015.35.5083 |
[3] |
Ruiying Wei, Yin Li, Zheng-an Yao. Global existence and convergence rates of solutions for the compressible Euler equations with damping. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2949-2967. doi: 10.3934/dcdsb.2020047 |
[4] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[5] |
James Broda, Alexander Grigo, Nikola P. Petrov. Convergence rates for semistochastic processes. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 109-125. doi: 10.3934/dcdsb.2019001 |
[6] |
Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270 |
[7] |
Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124 |
[8] |
Frank Blume. Minimal rates of entropy convergence for rank one systems. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 773-796. doi: 10.3934/dcds.2000.6.773 |
[9] |
Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787 |
[10] |
Stefan Kindermann, Antonio Leitão. Convergence rates for Kaczmarz-type regularization methods. Inverse Problems and Imaging, 2014, 8 (1) : 149-172. doi: 10.3934/ipi.2014.8.149 |
[11] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5567-5579. doi: 10.3934/dcdsb.2020367 |
[12] |
Walter Allegretto, Yanping Lin, Zhiyong Zhang. Convergence to convection-diffusion waves for solutions to dissipative nonlinear evolution equations. Conference Publications, 2009, 2009 (Special) : 11-23. doi: 10.3934/proc.2009.2009.11 |
[13] |
Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503 |
[14] |
Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183 |
[15] |
Daniel Gerth, Andreas Hofinger, Ronny Ramlau. On the lifting of deterministic convergence rates for inverse problems with stochastic noise. Inverse Problems and Imaging, 2017, 11 (4) : 663-687. doi: 10.3934/ipi.2017031 |
[16] |
Stefano Galatolo, Isaia Nisoli, Benoît Saussol. An elementary way to rigorously estimate convergence to equilibrium and escape rates. Journal of Computational Dynamics, 2015, 2 (1) : 51-64. doi: 10.3934/jcd.2015.2.51 |
[17] |
L. Olsen. Rates of convergence towards the boundary of a self-similar set. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 799-811. doi: 10.3934/dcds.2007.19.799 |
[18] |
Mina Jiang, Changjiang Zhu. Convergence rates to nonlinear diffusion waves for $p$-system with nonlinear damping on quadrant. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 887-918. doi: 10.3934/dcds.2009.23.887 |
[19] |
Masashi Ohnawa. Convergence rates towards the traveling waves for a model system of radiating gas with discontinuities. Kinetic and Related Models, 2012, 5 (4) : 857-872. doi: 10.3934/krm.2012.5.857 |
[20] |
Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]