doi: 10.3934/dcdsb.2020193

The nonstationary flows of micropolar fluids with thermal convection: An iterative approach

1. 

Departamento de Matemática, Universidade Federal de Pernambuco, Recife, PE, Brazil

2. 

Departamento de Matemática, Universidad de Tarapacá, Arica, Chile

* Corresponding author: miguel@dmat.ufpe.br

Received  October 2019 Revised  January 2020 Published  June 2020

Fund Project: This work was partially supported by CAPES-PRINT, 88887.311962/2018-00.
Charles Amorim was supported by CNPQ/Brazil

We consider a problem that describes the motion of a viscous incompressible and heat-conducting micropolar fluids in a bounded domain $ \Omega \subset \mathbb{R}^3 $. We use an iterative method to analyze the existence, uniqueness, and regularity of the solutions. We also determine the convergence rates in several norms.

Citation: Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020193
References:
[1]

C. Amrouche and V. Girault, On the existence and regularity of the solution of Stokes problem in arbitrary dimension, Proc. Japan Acad. Ser. A Math. Sci., 67 (1991), 171-175.  doi: 10.3792/pjaa.67.171.  Google Scholar

[2]

J. Boussinesq, Théorie Analytique de la Chaleur II, Gauthier-Villars, 1903. Google Scholar

[3]

A. C. Eringen, Simple microfluids, Internat. J. Engrg. Sci., 2 (1964), 205-217.  doi: 10.1016/0020-7225(64)90005-9.  Google Scholar

[4]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.  doi: 10.1512/iumj.1967.16.16001.  Google Scholar

[5]

D. D. Joseph, Stability of Fluid Motions. I, Springer Tracts in Natural Philosophy, 27, Springer-Verlag, Berlin-New York, 1976. doi: 10.1007/978-3-642-80991-0.  Google Scholar

[6]

Y. Kagei and M. Skowron, Nonstationary flows of nonsymmetric fluids with thermal convection, Hiroshima Math. J., 23 (1993), 343-363.  doi: 10.32917/hmj/1206128257.  Google Scholar

[7]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Mathematics and its Applications, 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969.  Google Scholar

[8]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uralćeva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1968.  Google Scholar

[9]

J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéares, Dunod; Gauthier-Villars, Paris, 1969.  Google Scholar

[10]

G. Łukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 13 (1989), 105-120.   Google Scholar

[11]

G. Łukaszewicz and W. Waluś, On stationary flows of asymmetric fluids with heat convection, Math. Methods Appl. Sci., 11 (1989), 343-351.  doi: 10.1002/mma.1670110304.  Google Scholar

[12]

G. Łukaszewicz, Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[13]

L. G. Petrosyan, Some problems of mechanics of fluids with antisymmetric stress tensor, Izd. Erevan Univ., (1984). Google Scholar

[14]

M. A. Rojas-Medar and E. E. Ortega-Torres, The equations of a viscous asymmetric fluid: An interactive approach, ZAMM Z. Angew. Math. Mech., 85 (2005), 471-489.  doi: 10.1002/zamm.199910189.  Google Scholar

[15]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solution, Math. Nachr., 188 (1997), 301-319.  doi: 10.1002/mana.19971880116.  Google Scholar

[16]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[17]

A. G. Zarubin, An iterative method for the approximate solution of an initial-boundary value problem for heat convection equations, Comput. Math. Math. Phys., 33 (1993), 1077-1085.   Google Scholar

show all references

References:
[1]

C. Amrouche and V. Girault, On the existence and regularity of the solution of Stokes problem in arbitrary dimension, Proc. Japan Acad. Ser. A Math. Sci., 67 (1991), 171-175.  doi: 10.3792/pjaa.67.171.  Google Scholar

[2]

J. Boussinesq, Théorie Analytique de la Chaleur II, Gauthier-Villars, 1903. Google Scholar

[3]

A. C. Eringen, Simple microfluids, Internat. J. Engrg. Sci., 2 (1964), 205-217.  doi: 10.1016/0020-7225(64)90005-9.  Google Scholar

[4]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.  doi: 10.1512/iumj.1967.16.16001.  Google Scholar

[5]

D. D. Joseph, Stability of Fluid Motions. I, Springer Tracts in Natural Philosophy, 27, Springer-Verlag, Berlin-New York, 1976. doi: 10.1007/978-3-642-80991-0.  Google Scholar

[6]

Y. Kagei and M. Skowron, Nonstationary flows of nonsymmetric fluids with thermal convection, Hiroshima Math. J., 23 (1993), 343-363.  doi: 10.32917/hmj/1206128257.  Google Scholar

[7]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Mathematics and its Applications, 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969.  Google Scholar

[8]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uralćeva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1968.  Google Scholar

[9]

J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéares, Dunod; Gauthier-Villars, Paris, 1969.  Google Scholar

[10]

G. Łukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 13 (1989), 105-120.   Google Scholar

[11]

G. Łukaszewicz and W. Waluś, On stationary flows of asymmetric fluids with heat convection, Math. Methods Appl. Sci., 11 (1989), 343-351.  doi: 10.1002/mma.1670110304.  Google Scholar

[12]

G. Łukaszewicz, Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[13]

L. G. Petrosyan, Some problems of mechanics of fluids with antisymmetric stress tensor, Izd. Erevan Univ., (1984). Google Scholar

[14]

M. A. Rojas-Medar and E. E. Ortega-Torres, The equations of a viscous asymmetric fluid: An interactive approach, ZAMM Z. Angew. Math. Mech., 85 (2005), 471-489.  doi: 10.1002/zamm.199910189.  Google Scholar

[15]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solution, Math. Nachr., 188 (1997), 301-319.  doi: 10.1002/mana.19971880116.  Google Scholar

[16]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[17]

A. G. Zarubin, An iterative method for the approximate solution of an initial-boundary value problem for heat convection equations, Comput. Math. Math. Phys., 33 (1993), 1077-1085.   Google Scholar

[1]

Wilhelm Schlag. Regularity and convergence rates for the Lyapunov exponents of linear cocycles. Journal of Modern Dynamics, 2013, 7 (4) : 619-637. doi: 10.3934/jmd.2013.7.619

[2]

Zhong Tan, Qiuju Xu, Huaqiao Wang. Global existence and convergence rates for the compressible magnetohydrodynamic equations without heat conductivity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5083-5105. doi: 10.3934/dcds.2015.35.5083

[3]

Ruiying Wei, Yin Li, Zheng-an Yao. Global existence and convergence rates of solutions for the compressible Euler equations with damping. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 2949-2969. doi: 10.3934/dcdsb.2020047

[4]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020310

[5]

James Broda, Alexander Grigo, Nikola P. Petrov. Convergence rates for semistochastic processes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 109-125. doi: 10.3934/dcdsb.2019001

[6]

Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124

[7]

Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020270

[8]

Frank Blume. Minimal rates of entropy convergence for rank one systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 773-796. doi: 10.3934/dcds.2000.6.773

[9]

Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787

[10]

Stefan Kindermann, Antonio Leitão. Convergence rates for Kaczmarz-type regularization methods. Inverse Problems & Imaging, 2014, 8 (1) : 149-172. doi: 10.3934/ipi.2014.8.149

[11]

Walter Allegretto, Yanping Lin, Zhiyong Zhang. Convergence to convection-diffusion waves for solutions to dissipative nonlinear evolution equations. Conference Publications, 2009, 2009 (Special) : 11-23. doi: 10.3934/proc.2009.2009.11

[12]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[13]

Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183

[14]

Daniel Gerth, Andreas Hofinger, Ronny Ramlau. On the lifting of deterministic convergence rates for inverse problems with stochastic noise. Inverse Problems & Imaging, 2017, 11 (4) : 663-687. doi: 10.3934/ipi.2017031

[15]

Stefano Galatolo, Isaia Nisoli, Benoît Saussol. An elementary way to rigorously estimate convergence to equilibrium and escape rates. Journal of Computational Dynamics, 2015, 2 (1) : 51-64. doi: 10.3934/jcd.2015.2.51

[16]

L. Olsen. Rates of convergence towards the boundary of a self-similar set. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 799-811. doi: 10.3934/dcds.2007.19.799

[17]

Mina Jiang, Changjiang Zhu. Convergence rates to nonlinear diffusion waves for $p$-system with nonlinear damping on quadrant. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 887-918. doi: 10.3934/dcds.2009.23.887

[18]

Masashi Ohnawa. Convergence rates towards the traveling waves for a model system of radiating gas with discontinuities. Kinetic & Related Models, 2012, 5 (4) : 857-872. doi: 10.3934/krm.2012.5.857

[19]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020150

[20]

José A. Carrillo, Jean Dolbeault, Ivan Gentil, Ansgar Jüngel. Entropy-energy inequalities and improved convergence rates for nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1027-1050. doi: 10.3934/dcdsb.2006.6.1027

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (35)
  • HTML views (116)
  • Cited by (0)

[Back to Top]