doi: 10.3934/dcdsb.2020195

Large-time behavior of matured population in an age-structured model

1. 

School of Mathematics and Statistics, Xidian University, Xi'an, China

2. 

Institut de Mathématiques de Bordeaux, Université de Bordeaux, Bordeaux, France

* Corresponding author: Linlin Li

Received  October 2019 Revised  April 2020 Published  June 2020

Fund Project: The first author is supported by the NSF of Shaanxi Province of China (2020JQ-289) and the Program for New Century Excellent Talents in University (XJS200701)

In this paper, we model a mosquito plasticity problem and investigate the large time behavior of matured population under different control strategies. We prove that when the control is small, then the matured population will become large for large time and when the control is large, then the matured population will become small for large time. In the intermediate case, we derive a time-delayed model for the matured population which can be governed by a sub-equation and a super-equation. We prove the existence of traveling fronts for the sub-equation and use it to prove that the matured population will finally be between the positive states of the sub-equation and super-equation. At last, we present numerical simulations.

Citation: Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020195
References:
[1]

S. Ai, Traveling wave fronts for generalized Fisher equations with spatio-temporal delays, J. Differential Equations, 232 (2007), 104-133.  doi: 10.1016/j.jde.2006.08.015.  Google Scholar

[2]

B. Ainseba and M. Langlais, On a population dynamics control problem with age dependence and spatial structure, J. Math. Anal. Appl., 248 (2000), 455-474.  doi: 10.1006/jmaa.2000.6921.  Google Scholar

[3]

J. Al-Omari and S. A. Gourley, Monotone travelling fronts in an age-structured reaction-diffusion model of a single species, J. Math. Biol., 45 (2002), 294-312.  doi: 10.1007/s002850200159.  Google Scholar

[4]

S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics, Mathematical Modelling: Theory and Applications, 11, Kluwer Academic Publishers, Dordrecht, 2000. doi: 10.1007/978-94-015-9436-3.  Google Scholar

[5]

P. AshwinM. V. BartuccelliT. J. Bridges and S. A. Gourley, Travelling fronts for the KPP equation with spatio-temporal delay, Z. Angew. Math. Phys., 53 (2002), 103-122.  doi: 10.1007/s00033-002-8145-8.  Google Scholar

[6]

N. F. Britton, Aggregation and the competitive exclusion principle, J. Theoret. Biol., 136 (1989), 57-66.  doi: 10.1016/S0022-5193(89)80189-4.  Google Scholar

[7]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.  doi: 10.1137/0150099.  Google Scholar

[8]

X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations, J. Differential Equations, 184 (2002), 549-569.  doi: 10.1006/jdeq.2001.4153.  Google Scholar

[9]

X. Chen and J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann., 326 (2003), 123-146.  doi: 10.1007/s00208-003-0414-0.  Google Scholar

[10]

D. Daners and P. Koch Medina, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Research Notes in Mathematics Series, 279, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1992.  Google Scholar

[11]

L. C. EvansH. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45 (1992), 1097-1123.  doi: 10.1002/cpa.3160450903.  Google Scholar

[12]

T. FariaW. Huang and J. Wu, Travelling waves for delayed reaction-diffusion equations with global response, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 229-261.  doi: 10.1098/rspa.2005.1554.  Google Scholar

[13]

C. P. Ferreira, S. P. Lyra, F. Azevedo, D. Greenhalgh and E. Massad, Modelling the impact of the long-term use of insecticide-treated bed nets on Anopheles mosquito biting time, Malaria J., 16 (2017). doi: 10.1186/s12936-017-2014-6.  Google Scholar

[14]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rational Mech. Anal., 65 (1977), 335-361.  doi: 10.1007/BF00250432.  Google Scholar

[15]

S. A. Gourley and N. F. Britton, A predator-prey reaction-diffusion system with nonlocal effects, J. Math. Biol., 34 (1996), 297-333.  doi: 10.1007/BF00160498.  Google Scholar

[16]

S. A. Gourley, Travelling front solutions of a nonlocal Fisher equation, J. Math. Biol., 41 (2000), 272-284.  doi: 10.1007/s002850000047.  Google Scholar

[17]

S. A. Gourley and S. Ruan, Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model, SIAM J. Math. Anal., 35 (2003), 806-822.  doi: 10.1137/S003614100139991.  Google Scholar

[18]

B. Huho, O. Briët, A. Seyoum, C. Sikaala and N. Bayoh, et al., Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa, Internat. J. Epidemiology, 42 (2013), 235-247 doi: 10.1093/ije/dys214.  Google Scholar

[19]

L. L. LiC. P. Ferreira and B. Ainseba, Mathematical analysis of an age structured problem modeling phenotypic plasticity in mosquito behaviour, Nonlinear Anal. Real World Appl., 48 (2019), 410-423.  doi: 10.1016/j.nonrwa.2019.01.019.  Google Scholar

[20]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.  Google Scholar

[21]

S. Ma and X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay, J. Differential Equations, 217 (2005), 54-87.  doi: 10.1016/j.jde.2005.05.004.  Google Scholar

[22]

M. C. Memory, Bifurcation and asymptotic behavior of solutions of a delay-differential equation with diffusion, SIAM J. Math. Anal., 20 (1989), 533-546.  doi: 10.1137/0520037.  Google Scholar

[23]

C. Ou and J. Wu, Persistence of wavefronts in delayed nonlocal reaction-diffusion equations, J. Differential Equations, 235 (2007), 219-261.  doi: 10.1016/j.jde.2006.12.010.  Google Scholar

[24]

M. R. Reddy, H. J. Overgaard, S. Abaga, V. P. Reddy, A. Caccone, A. E. Kiszewski and M. A. Slotman, Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea, Malaria J., 10 (2011). doi: 10.1186/1475-2875-10-184.  Google Scholar

[25]

S. Ruan and D. Xiao, Stability of steady states and existence of travelling waves in a vector-disease model, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 991-1011.  doi: 10.1017/S0308210500003590.  Google Scholar

[26]

T. L. Russell, N. J. Govella, S. Azizi, C. J. Drakeley, S. P. Kachur and G. F. Killeen, Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania, Malaria J., 10 (2011). doi: 10.1186/1475-2875-10-80.  Google Scholar

[27]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional-differential equations, Trans. Amer. Math. Soc., 302 (1987), 587-615. doi: 10.2307/2000859.  Google Scholar

[28]

H. L. Smith, A structured population model and a related functional-differential equation: Global attractors and uniform persistence, J. Dynam. Differential Equations, 6 (1994), 71-99.  doi: 10.1007/BF02219189.  Google Scholar

[29]

H. L. Smith and X.-Q. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 31 (2000), 514-534.  doi: 10.1137/S0036141098346785.  Google Scholar

[30]

J. W.-H. SoJ. Wu and X. Zou, Structured population on two patches: Modeling dispersal and delay, J. Math. Biol., 43 (2001), 37-51.  doi: 10.1007/s002850100081.  Google Scholar

[31]

J. W.-H. SoJ. Wu and X. Zou, A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 1841-1853.  doi: 10.1098/rspa.2001.0789.  Google Scholar

[32]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[33]

Z.-C. WangW.-T. Li and S. Ruan, Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays, J. Differential Equations, 222 (2006), 185-232.  doi: 10.1016/j.jde.2005.08.010.  Google Scholar

[34]

Z.-C. WangW.-T. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects, J. Dynam. Differential Equations, 20 (2008), 573-607.  doi: 10.1007/s10884-008-9103-8.  Google Scholar

[35]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam. Differential Equations, 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.  Google Scholar

[36]

A. W. Yadouleton, G. Padonou, A. Asidi, N. Moiroux and S. Bio-Banganna, et al., Insecticide resistance status in Anopheles gambiae in southern Benin, Malaria J., 9 (2010). doi: 10.1186/1475-2875-9-83.  Google Scholar

[37]

K. Yoshida, The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology, Hiroshima Math. J., 12 (1982), 321-348.  doi: 10.32917/hmj/1206133754.  Google Scholar

[38]

X.-Q. Zhao and D. Xiao, The asymptotic speed of spread and traveling waves for a vector disease model, J. Dynam. Differential Equations, 18 (2006), 1001-1019.  doi: 10.1007/s10884-006-9044-z.  Google Scholar

show all references

References:
[1]

S. Ai, Traveling wave fronts for generalized Fisher equations with spatio-temporal delays, J. Differential Equations, 232 (2007), 104-133.  doi: 10.1016/j.jde.2006.08.015.  Google Scholar

[2]

B. Ainseba and M. Langlais, On a population dynamics control problem with age dependence and spatial structure, J. Math. Anal. Appl., 248 (2000), 455-474.  doi: 10.1006/jmaa.2000.6921.  Google Scholar

[3]

J. Al-Omari and S. A. Gourley, Monotone travelling fronts in an age-structured reaction-diffusion model of a single species, J. Math. Biol., 45 (2002), 294-312.  doi: 10.1007/s002850200159.  Google Scholar

[4]

S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics, Mathematical Modelling: Theory and Applications, 11, Kluwer Academic Publishers, Dordrecht, 2000. doi: 10.1007/978-94-015-9436-3.  Google Scholar

[5]

P. AshwinM. V. BartuccelliT. J. Bridges and S. A. Gourley, Travelling fronts for the KPP equation with spatio-temporal delay, Z. Angew. Math. Phys., 53 (2002), 103-122.  doi: 10.1007/s00033-002-8145-8.  Google Scholar

[6]

N. F. Britton, Aggregation and the competitive exclusion principle, J. Theoret. Biol., 136 (1989), 57-66.  doi: 10.1016/S0022-5193(89)80189-4.  Google Scholar

[7]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.  doi: 10.1137/0150099.  Google Scholar

[8]

X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations, J. Differential Equations, 184 (2002), 549-569.  doi: 10.1006/jdeq.2001.4153.  Google Scholar

[9]

X. Chen and J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann., 326 (2003), 123-146.  doi: 10.1007/s00208-003-0414-0.  Google Scholar

[10]

D. Daners and P. Koch Medina, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Research Notes in Mathematics Series, 279, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1992.  Google Scholar

[11]

L. C. EvansH. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45 (1992), 1097-1123.  doi: 10.1002/cpa.3160450903.  Google Scholar

[12]

T. FariaW. Huang and J. Wu, Travelling waves for delayed reaction-diffusion equations with global response, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 229-261.  doi: 10.1098/rspa.2005.1554.  Google Scholar

[13]

C. P. Ferreira, S. P. Lyra, F. Azevedo, D. Greenhalgh and E. Massad, Modelling the impact of the long-term use of insecticide-treated bed nets on Anopheles mosquito biting time, Malaria J., 16 (2017). doi: 10.1186/s12936-017-2014-6.  Google Scholar

[14]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rational Mech. Anal., 65 (1977), 335-361.  doi: 10.1007/BF00250432.  Google Scholar

[15]

S. A. Gourley and N. F. Britton, A predator-prey reaction-diffusion system with nonlocal effects, J. Math. Biol., 34 (1996), 297-333.  doi: 10.1007/BF00160498.  Google Scholar

[16]

S. A. Gourley, Travelling front solutions of a nonlocal Fisher equation, J. Math. Biol., 41 (2000), 272-284.  doi: 10.1007/s002850000047.  Google Scholar

[17]

S. A. Gourley and S. Ruan, Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model, SIAM J. Math. Anal., 35 (2003), 806-822.  doi: 10.1137/S003614100139991.  Google Scholar

[18]

B. Huho, O. Briët, A. Seyoum, C. Sikaala and N. Bayoh, et al., Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa, Internat. J. Epidemiology, 42 (2013), 235-247 doi: 10.1093/ije/dys214.  Google Scholar

[19]

L. L. LiC. P. Ferreira and B. Ainseba, Mathematical analysis of an age structured problem modeling phenotypic plasticity in mosquito behaviour, Nonlinear Anal. Real World Appl., 48 (2019), 410-423.  doi: 10.1016/j.nonrwa.2019.01.019.  Google Scholar

[20]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.  Google Scholar

[21]

S. Ma and X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay, J. Differential Equations, 217 (2005), 54-87.  doi: 10.1016/j.jde.2005.05.004.  Google Scholar

[22]

M. C. Memory, Bifurcation and asymptotic behavior of solutions of a delay-differential equation with diffusion, SIAM J. Math. Anal., 20 (1989), 533-546.  doi: 10.1137/0520037.  Google Scholar

[23]

C. Ou and J. Wu, Persistence of wavefronts in delayed nonlocal reaction-diffusion equations, J. Differential Equations, 235 (2007), 219-261.  doi: 10.1016/j.jde.2006.12.010.  Google Scholar

[24]

M. R. Reddy, H. J. Overgaard, S. Abaga, V. P. Reddy, A. Caccone, A. E. Kiszewski and M. A. Slotman, Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea, Malaria J., 10 (2011). doi: 10.1186/1475-2875-10-184.  Google Scholar

[25]

S. Ruan and D. Xiao, Stability of steady states and existence of travelling waves in a vector-disease model, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 991-1011.  doi: 10.1017/S0308210500003590.  Google Scholar

[26]

T. L. Russell, N. J. Govella, S. Azizi, C. J. Drakeley, S. P. Kachur and G. F. Killeen, Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania, Malaria J., 10 (2011). doi: 10.1186/1475-2875-10-80.  Google Scholar

[27]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional-differential equations, Trans. Amer. Math. Soc., 302 (1987), 587-615. doi: 10.2307/2000859.  Google Scholar

[28]

H. L. Smith, A structured population model and a related functional-differential equation: Global attractors and uniform persistence, J. Dynam. Differential Equations, 6 (1994), 71-99.  doi: 10.1007/BF02219189.  Google Scholar

[29]

H. L. Smith and X.-Q. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 31 (2000), 514-534.  doi: 10.1137/S0036141098346785.  Google Scholar

[30]

J. W.-H. SoJ. Wu and X. Zou, Structured population on two patches: Modeling dispersal and delay, J. Math. Biol., 43 (2001), 37-51.  doi: 10.1007/s002850100081.  Google Scholar

[31]

J. W.-H. SoJ. Wu and X. Zou, A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 1841-1853.  doi: 10.1098/rspa.2001.0789.  Google Scholar

[32]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[33]

Z.-C. WangW.-T. Li and S. Ruan, Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays, J. Differential Equations, 222 (2006), 185-232.  doi: 10.1016/j.jde.2005.08.010.  Google Scholar

[34]

Z.-C. WangW.-T. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects, J. Dynam. Differential Equations, 20 (2008), 573-607.  doi: 10.1007/s10884-008-9103-8.  Google Scholar

[35]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam. Differential Equations, 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.  Google Scholar

[36]

A. W. Yadouleton, G. Padonou, A. Asidi, N. Moiroux and S. Bio-Banganna, et al., Insecticide resistance status in Anopheles gambiae in southern Benin, Malaria J., 9 (2010). doi: 10.1186/1475-2875-9-83.  Google Scholar

[37]

K. Yoshida, The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology, Hiroshima Math. J., 12 (1982), 321-348.  doi: 10.32917/hmj/1206133754.  Google Scholar

[38]

X.-Q. Zhao and D. Xiao, The asymptotic speed of spread and traveling waves for a vector disease model, J. Dynam. Differential Equations, 18 (2006), 1001-1019.  doi: 10.1007/s10884-006-9044-z.  Google Scholar

Figure 1.  the matured population $ w(t,x) $ for $ t = 0 $ and $ t = 0.25 $ with no control
Figure 2.  the matured population $ w(t,x) $ for $ t = 0.5 $ and $ t = 1 $ with no control
Figure 3.  the matured population $ w(t,x) $ for $ t = 0 $ and $ t = 0.25 $ with control $ u(a,w) $
Figure 4.  the matured population $ w(t,x) $ for $ t = 0.5 $ and $ t = 1 $ with control $ u(a,w) $
Figure 5.  the matured population $ w(t,x) $ for $ t = 0 $, $ 0.25 $
Figure 6.  the matured population $ w(t,x) $ for $ t=0.5 $, $ 1 $
Figure 7.  the matured population $ w(t,x) $ for $ 1.5 $, $ 2 $
[1]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[2]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[3]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[4]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[5]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[6]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[7]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[8]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[9]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[10]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[11]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[12]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[13]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[14]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[15]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[16]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[17]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[18]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[19]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[20]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (56)
  • HTML views (182)
  • Cited by (0)

Other articles
by authors

[Back to Top]