[1]
|
F. Brezzi, J. Douglas Jr. and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), 217-235.
doi: 10.1007/BF01389710.
|
[2]
|
E. Burman and P. Hansbo, Interior-penalty-stabilized Lagrange multiplier methods for the finite-element solution of elliptic interface problems, IMA J. Numer. Anal., 30 (2010), 870-885.
doi: 10.1093/imanum/drn081.
|
[3]
|
Z. Chen and J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math., 79 (1998), 175-202.
doi: 10.1007/s002110050336.
|
[4]
|
G. R. Hadley, High-accuracy finite-difference equations for dielectric waveguide analysis II: Dielectric corners, J. Lightwave Technol., 20 (2002), 1219-1231.
doi: 10.1109/JLT.2002.800371.
|
[5]
|
S. Hou, Z. Lin, L. Wang and W. Wang, A numerical method for solving elasticity equations with interfaces, Commun. Comput. Phys., 12 (2012), 595-612.
doi: 10.4208/cicp.160910.130711s.
|
[6]
|
S. Hou, W. Wang and L. Wang, Numerical method for solving matrix coefficient elliptic equation with sharp-edged interfaces, J. Comput. Phys., 229 (2010), 7162-7179.
doi: 10.1016/j.jcp.2010.06.005.
|
[7]
|
T. Y. Hou, Z. Li and S. Osher, Hybrid method for moving interface problems with application to the Hele-Shaw flow, J. Comput. Phys., 134 (1997), 236-252.
doi: 10.1006/jcph.1997.5689.
|
[8]
|
A. T. Layton, Using integral equations and the immersed interface method to solve immersed boundary problems with stiff forces, Comput. & Fluids, 38 (2009), 266-272.
doi: 10.1016/j.compfluid.2008.02.003.
|
[9]
|
R. Lin, X. Ye, S. Zhang and P. Zhu, A weak Galerkin finite element method for singular perturbed convection-diffusion-reaction problems, SIAM J. Numer. Anal., 56 (2018), 1482-1497.
doi: 10.1137/17M1152528.
|
[10]
|
L. Mu, Weak Galerkin based a posteriori error estimates for second order elliptic interface problems on polygonal meshes, J. Comput. Appl. Math., 361 (2019), 413-425.
doi: 10.1016/j.cam.2019.04.026.
|
[11]
|
L. Mu, J. Wang, G. Wei, X. Ye and S. Zhao, Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250 (2013), 106-125.
doi: 10.1016/j.jcp.2013.04.042.
|
[12]
|
L. Mu, J. Wang and X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal., 35 (2015), 1228-1255.
doi: 10.1093/imanum/dru026.
|
[13]
|
L. Mu, J. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduction, J. Comput. Appl. Math., 285 (2015), 45-58.
doi: 10.1016/j.cam.2015.02.001.
|
[14]
|
L. Mu, J. Wang, X. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.
doi: 10.1007/s10915-014-9964-4.
|
[15]
|
L. Mu, J. Wang, X. Ye and S. Zhao, A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phys., 325 (2016), 157-173.
doi: 10.1016/j.jcp.2016.08.024.
|
[16]
|
W. Qi and L. Song, Weak Galerkin method with implicit $\theta$-schemes for second-order parabolic problems, Appl. Math. Comput., 366 (2020), 11pp.
doi: 10.1016/j.amc.2019.124731.
|
[17]
|
P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, in Mathematical Aspects of Finite Element Methods, Lecture Notes in Math., 606, Springer, Berlin, 1977.
|
[18]
|
L. Song, K. Liu and S. Zhao, A weak Galerkin method with an over-relaxed stabilization for low regularity elliptic problems, J. Sci. Comput., 71 (2017), 195-218.
doi: 10.1007/s10915-016-0296-4.
|
[19]
|
L. Song, S. Zhao and K. Liu, A relaxed weak Galerkin method for elliptic interface problems with low regularity, Appl. Numer. Math., 128 (2018), 65-80.
doi: 10.1016/j.apnum.2018.01.021.
|
[20]
|
J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.
doi: 10.1016/j.cam.2012.10.003.
|
[21]
|
J. Wang and X. Ye, A weak Galerkin finite element method for the stokes equations, Adv. Comput. Math., 42 (2016), 155-174.
doi: 10.1007/s10444-015-9415-2.
|
[22]
|
J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp., 83 (2014), 2101-2126.
doi: 10.1090/S0025-5718-2014-02852-4.
|
[23]
|
J. Wang and X. Ye, The basics of weak Galerkin finite element methods, preprint, arXiv: 1901.10035.
|
[24]
|
Y. C. Zhou and G. W. Wei, On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method, J. Comput. Phys., 219 (2006), 228-246.
doi: 10.1016/j.jcp.2006.03.027.
|