doi: 10.3934/dcdsb.2020197

Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system

1. 

College of Mathematics, Hunan University, Changsha, Hunan 410082, China

2. 

School of Mathematics and Physics, China University of Geosciences, Wuhan, Hubei 430074, China

* Corresponding author: Shangjiang Guo

Received  November 2019 Revised  April 2020 Published  June 2020

Fund Project: The first and second authors are supported by NSF of China (Grant Nos. 11671123 and 11801089) and by the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan)

This paper performs an in-depth qualitative analysis of the dynamic behavior of a diffusive Lotka-Volterra type competition system with advection terms under the homogeneous Dirichlet boundary condition. First, we obtain the existence, multiplicity and explicit structure of the spatially nonhomogeneous steady-state solutions by using implicit function theorem and Lyapunov-Schmidt reduction method. Secondly, by analyzing the distribution of eigenvalues of infinitesimal generators, the stability of spatially nonhomogeneous positive steady-state solutions and the non-existence of Hopf bifurcations at spatially nonhomogeneous positive steady-state solutions are given. Finally, two concrete examples are provided to support our previous theoretical results. It should be noticed that an elliptic operator with advection term is not self-adjoint, which causes some trouble in the spatial decomposition, explicit expressions of steady-state solutions and some deductive processes related to infinitesimal generators. Moreover, unlike other work, the advection rate here depends on the spatial position, which increases some difficulties in the investigation of the principal eigenvalue.

Citation: Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020197
References:
[1]

L. C. Birch, Experimental background to the study of the distribution and aboundance of insects: Ⅰ. The influence of temperature, moisture and food on the innate capacity for increase of three grain beetles, Ecology, 34 (1953), 698-711.  doi: 10.2307/1931333.  Google Scholar

[2]

S. Busenberg and W. Huang, Stability and Hopf bifurcation for a population delay model with diffusion effects, J. Differential Equations, 124 (1996), 80-107.  doi: 10.1006/jdeq.1996.0003.  Google Scholar

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[4]

N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal., 4 (1974/75), 17-37.  doi: 10.1080/00036817408839081.  Google Scholar

[5]

S. Chen and J. Shi, Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Differential Equations, 253 (2012), 3440-3470.  doi: 10.1016/j.jde.2012.08.031.  Google Scholar

[6]

X. Chen and Y. Lou, Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications, Indiana Univ. Math. J., 61 (2012), 45-80.  doi: 10.1512/iumj.2012.61.4518.  Google Scholar

[7]

Y. DengS. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differential Equations, 258 (2015), 115-147.  doi: 10.1016/j.jde.2014.09.006.  Google Scholar

[8]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254 (2001), 433-463.  doi: 10.1006/jmaa.2000.7182.  Google Scholar

[9]

J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012), 873-895.  doi: 10.1007/s10884-012-9267-0.  Google Scholar

[10]

S. Guo, Patterns in a nonlocal time-delayed reaction-diffusion equation, Z. Angew. Math. Phys., 69 (2018), 31pp. doi: 10.1007/s00033-017-0904-7.  Google Scholar

[11]

S. Guo and S. Li, On the stability of reaction-diffusion models with nonlocal delay effect and nonlinear boundary condition, Appl. Math. Lett., 103 (2020), 7pp. doi: 10.1016/j.aml.2019.106197.  Google Scholar

[12]

S. Guo and L. Ma, Stability and bifurcation in a delayed reaction-diffusion equation with Dirichlet boundary condition, J. Nonlinear Sci., 26 (2016), 545-580.  doi: 10.1007/s00332-016-9285-x.  Google Scholar

[13]

S. Guo and J. Wu, Bifurcation Theory of Functional Differential Equations, Applied Mathematical Sciences, 184, Springer, New York, 2013. doi: 10.1007/978-1-4614-6992-6.  Google Scholar

[14]

S. Guo and S. Yan, Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect, J. Differential Equations, 260 (2016), 781-817.  doi: 10.1016/j.jde.2015.09.031.  Google Scholar

[15]

X. He and W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: Heterogeneity vs. homogeneity, J. Differential Equations, 254 (2013), 528-546.  doi: 10.1016/j.jde.2012.08.032.  Google Scholar

[16]

R. Hu and Y. Yuan, Spatially nonhomogeneous equilibrium in a reaction-diffusion system with distributed delay, J. Differential Equations, 250 (2011), 2779-2806.  doi: 10.1016/j.jde.2011.01.011.  Google Scholar

[17]

S. Li and S. Guo, Stability and Hopf bifurcation in a Hutchinson model, Appl. Math. Lett., 101 (2020), 7pp. doi: 10.1016/j.aml.2019.106066.  Google Scholar

[18]

W.-T. LiX.-P. Yan and C.-H. Zhang, Stability and Hopf bifurcation for a delayed cooperation diffusion system with Dirichlet boundary conditions, Chaos Solitons Fractals, 38 (2008), 227-237.  doi: 10.1016/j.chaos.2006.11.015.  Google Scholar

[19]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[20]

Y. Lou, X.-Q. Zhao and P. Zhou, Global dynamics of a Lotka-Volterra competition-diffusionadvection system in heterogeneous environments, J. Math. Pures Appl. (9), 121 (2019), 47–82. doi: 10.1016/j.matpur.2018.06.010.  Google Scholar

[21]

L. Ma and S. Guo, Bifurcation and stability of a two-species diffusive Lotka-Volterra model, Comm. Pure Appl. Anal., 19 (2020), 1205-1232.  doi: 10.3934/cpaa.2020056.  Google Scholar

[22]

L. Ma, S. Guo and T. Chen, Dynamics of a nonlocal dispersal model with a nonlocal reaction term, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 18pp. doi: 10.1142/S0218127418500335.  Google Scholar

[23]

J. D. Murray and R. P. Sperb, Minimum domains for spatial patterns in a class of reaction diffusion equations, J. Math. Biol., 18 (1983), 169-184.  doi: 10.1007/BF00280665.  Google Scholar

[24]

W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611971972.fm.  Google Scholar

[25]

H. Qiu, S. Guo and S. Li, Stability and Bifurcation in a Predator-Prey System with Prey-Taxis, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30 (2020), 25pp. doi: 10.1142/S0218127420500224.  Google Scholar

[26]

R. M. Sibly and J. Hone, Population growth rate and its determinants: An overview, Philos. Trans. R. Soc. B., 357 (2002), 1153-1170.  doi: 10.1098/rstb.2002.1117.  Google Scholar

[27]

J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218.  doi: 10.1093/biomet/38.1-2.196.  Google Scholar

[28]

Y. SuJ. Wei and J. Shi, Hopf bifurcation in a diffusive logistic equation with mixed delayed and instantaneous density dependence, J. Dynam. Differential Equations, 24 (2012), 897-925.  doi: 10.1007/s10884-012-9268-z.  Google Scholar

[29]

D. Tang and P. Zhou, On a Lotka-Volterra competition-diffusion-advection system: Homogeneity vs heterogeneity, J. Differential Equations, 268 (2020), 1570-1599.  doi: 10.1016/j.jde.2019.09.003.  Google Scholar

[30] Q. X. Ye and Z. Y. Li, Introduction to Reaction-Diffusion Equations, Foundations of Modern Mathematics Series, Science Press, Beijing, 1990.   Google Scholar
[31]

F. YiJ. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977.  doi: 10.1016/j.jde.2008.10.024.  Google Scholar

[32]

L. ZhouY. Tang and S. Hussein, Stability and Hopf bifurcation for a delay competition diffusion system, Chaos Solitons Fractals, 14 (2002), 1201-1225.  doi: 10.1016/S0960-0779(02)00068-1.  Google Scholar

[33]

P. Zhou and D. Xiao, Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 275 (2018), 356-380.  doi: 10.1016/j.jfa.2018.03.006.  Google Scholar

[34]

P. Zhou and X.-Q. Zhao, Evolution of passive movement in advective environments: General boundary condition, J. Differential Equations, 264 (2018), 4176-4198.  doi: 10.1016/j.jde.2017.12.005.  Google Scholar

[35]

R. Zou and S. Guo, Dynamics of a diffusive Leslie-Gower predator-prey model in spatially heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B. (2020) in press doi: 10.3934/dcdsb.2020093.  Google Scholar

show all references

References:
[1]

L. C. Birch, Experimental background to the study of the distribution and aboundance of insects: Ⅰ. The influence of temperature, moisture and food on the innate capacity for increase of three grain beetles, Ecology, 34 (1953), 698-711.  doi: 10.2307/1931333.  Google Scholar

[2]

S. Busenberg and W. Huang, Stability and Hopf bifurcation for a population delay model with diffusion effects, J. Differential Equations, 124 (1996), 80-107.  doi: 10.1006/jdeq.1996.0003.  Google Scholar

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[4]

N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal., 4 (1974/75), 17-37.  doi: 10.1080/00036817408839081.  Google Scholar

[5]

S. Chen and J. Shi, Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Differential Equations, 253 (2012), 3440-3470.  doi: 10.1016/j.jde.2012.08.031.  Google Scholar

[6]

X. Chen and Y. Lou, Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications, Indiana Univ. Math. J., 61 (2012), 45-80.  doi: 10.1512/iumj.2012.61.4518.  Google Scholar

[7]

Y. DengS. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differential Equations, 258 (2015), 115-147.  doi: 10.1016/j.jde.2014.09.006.  Google Scholar

[8]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254 (2001), 433-463.  doi: 10.1006/jmaa.2000.7182.  Google Scholar

[9]

J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012), 873-895.  doi: 10.1007/s10884-012-9267-0.  Google Scholar

[10]

S. Guo, Patterns in a nonlocal time-delayed reaction-diffusion equation, Z. Angew. Math. Phys., 69 (2018), 31pp. doi: 10.1007/s00033-017-0904-7.  Google Scholar

[11]

S. Guo and S. Li, On the stability of reaction-diffusion models with nonlocal delay effect and nonlinear boundary condition, Appl. Math. Lett., 103 (2020), 7pp. doi: 10.1016/j.aml.2019.106197.  Google Scholar

[12]

S. Guo and L. Ma, Stability and bifurcation in a delayed reaction-diffusion equation with Dirichlet boundary condition, J. Nonlinear Sci., 26 (2016), 545-580.  doi: 10.1007/s00332-016-9285-x.  Google Scholar

[13]

S. Guo and J. Wu, Bifurcation Theory of Functional Differential Equations, Applied Mathematical Sciences, 184, Springer, New York, 2013. doi: 10.1007/978-1-4614-6992-6.  Google Scholar

[14]

S. Guo and S. Yan, Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect, J. Differential Equations, 260 (2016), 781-817.  doi: 10.1016/j.jde.2015.09.031.  Google Scholar

[15]

X. He and W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: Heterogeneity vs. homogeneity, J. Differential Equations, 254 (2013), 528-546.  doi: 10.1016/j.jde.2012.08.032.  Google Scholar

[16]

R. Hu and Y. Yuan, Spatially nonhomogeneous equilibrium in a reaction-diffusion system with distributed delay, J. Differential Equations, 250 (2011), 2779-2806.  doi: 10.1016/j.jde.2011.01.011.  Google Scholar

[17]

S. Li and S. Guo, Stability and Hopf bifurcation in a Hutchinson model, Appl. Math. Lett., 101 (2020), 7pp. doi: 10.1016/j.aml.2019.106066.  Google Scholar

[18]

W.-T. LiX.-P. Yan and C.-H. Zhang, Stability and Hopf bifurcation for a delayed cooperation diffusion system with Dirichlet boundary conditions, Chaos Solitons Fractals, 38 (2008), 227-237.  doi: 10.1016/j.chaos.2006.11.015.  Google Scholar

[19]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[20]

Y. Lou, X.-Q. Zhao and P. Zhou, Global dynamics of a Lotka-Volterra competition-diffusionadvection system in heterogeneous environments, J. Math. Pures Appl. (9), 121 (2019), 47–82. doi: 10.1016/j.matpur.2018.06.010.  Google Scholar

[21]

L. Ma and S. Guo, Bifurcation and stability of a two-species diffusive Lotka-Volterra model, Comm. Pure Appl. Anal., 19 (2020), 1205-1232.  doi: 10.3934/cpaa.2020056.  Google Scholar

[22]

L. Ma, S. Guo and T. Chen, Dynamics of a nonlocal dispersal model with a nonlocal reaction term, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 18pp. doi: 10.1142/S0218127418500335.  Google Scholar

[23]

J. D. Murray and R. P. Sperb, Minimum domains for spatial patterns in a class of reaction diffusion equations, J. Math. Biol., 18 (1983), 169-184.  doi: 10.1007/BF00280665.  Google Scholar

[24]

W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611971972.fm.  Google Scholar

[25]

H. Qiu, S. Guo and S. Li, Stability and Bifurcation in a Predator-Prey System with Prey-Taxis, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30 (2020), 25pp. doi: 10.1142/S0218127420500224.  Google Scholar

[26]

R. M. Sibly and J. Hone, Population growth rate and its determinants: An overview, Philos. Trans. R. Soc. B., 357 (2002), 1153-1170.  doi: 10.1098/rstb.2002.1117.  Google Scholar

[27]

J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218.  doi: 10.1093/biomet/38.1-2.196.  Google Scholar

[28]

Y. SuJ. Wei and J. Shi, Hopf bifurcation in a diffusive logistic equation with mixed delayed and instantaneous density dependence, J. Dynam. Differential Equations, 24 (2012), 897-925.  doi: 10.1007/s10884-012-9268-z.  Google Scholar

[29]

D. Tang and P. Zhou, On a Lotka-Volterra competition-diffusion-advection system: Homogeneity vs heterogeneity, J. Differential Equations, 268 (2020), 1570-1599.  doi: 10.1016/j.jde.2019.09.003.  Google Scholar

[30] Q. X. Ye and Z. Y. Li, Introduction to Reaction-Diffusion Equations, Foundations of Modern Mathematics Series, Science Press, Beijing, 1990.   Google Scholar
[31]

F. YiJ. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977.  doi: 10.1016/j.jde.2008.10.024.  Google Scholar

[32]

L. ZhouY. Tang and S. Hussein, Stability and Hopf bifurcation for a delay competition diffusion system, Chaos Solitons Fractals, 14 (2002), 1201-1225.  doi: 10.1016/S0960-0779(02)00068-1.  Google Scholar

[33]

P. Zhou and D. Xiao, Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 275 (2018), 356-380.  doi: 10.1016/j.jfa.2018.03.006.  Google Scholar

[34]

P. Zhou and X.-Q. Zhao, Evolution of passive movement in advective environments: General boundary condition, J. Differential Equations, 264 (2018), 4176-4198.  doi: 10.1016/j.jde.2017.12.005.  Google Scholar

[35]

R. Zou and S. Guo, Dynamics of a diffusive Leslie-Gower predator-prey model in spatially heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B. (2020) in press doi: 10.3934/dcdsb.2020093.  Google Scholar

Figure 1.  Solutions of (58) with parameters (59) and $ r = 1.1 $ tend to a spatially nonhomogeneous boundary steady-state
Figure 2.  Solutions of (58) with parameters (60) and $ r = 2.1 $ tend to a spatially nonhomogeneous positive steady-state
Table 1.  The Corresponding Table of Bifurcation Parameter and Open Set
Theorem Bifurcation Value Open Set $ \Lambda $
Theorem 2.3 $ \mu_1 $ $ (\mu_1-\delta_1, \mu_1)\bigcup(\mu_1, \mu_1+\delta_1) $
Theorem 2.4 $ \mu_2 $ $ (\mu_2-\delta_2, \mu_2)\bigcup(\mu_2, \mu_2+\delta_2) $
Theorem 2.5 $ \mu_\ast $ $ (\mu_\ast-\delta_3, \mu_\ast)\bigcup(\mu_\ast, \mu_\ast+\delta_3) $
Theorem 2.6 $ (\mathbf{i}) $ $ \mu_1 $ $ (\mu_1-\delta_5, \mu_1)\bigcup(\mu_1, \mu_1+\delta_5) $
Theorem 2.6 $ (\mathbf{ii}) $ $ \mu_2 $ $ (\mu_2-\delta_6, \mu_2)\bigcup(\mu_2, \mu_2+\delta_6) $
Theorem Bifurcation Value Open Set $ \Lambda $
Theorem 2.3 $ \mu_1 $ $ (\mu_1-\delta_1, \mu_1)\bigcup(\mu_1, \mu_1+\delta_1) $
Theorem 2.4 $ \mu_2 $ $ (\mu_2-\delta_2, \mu_2)\bigcup(\mu_2, \mu_2+\delta_2) $
Theorem 2.5 $ \mu_\ast $ $ (\mu_\ast-\delta_3, \mu_\ast)\bigcup(\mu_\ast, \mu_\ast+\delta_3) $
Theorem 2.6 $ (\mathbf{i}) $ $ \mu_1 $ $ (\mu_1-\delta_5, \mu_1)\bigcup(\mu_1, \mu_1+\delta_5) $
Theorem 2.6 $ (\mathbf{ii}) $ $ \mu_2 $ $ (\mu_2-\delta_6, \mu_2)\bigcup(\mu_2, \mu_2+\delta_6) $
[1]

Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201

[2]

Qi Wang. Some global dynamics of a Lotka-Volterra competition-diffusion-advection system. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3245-3255. doi: 10.3934/cpaa.2020142

[3]

Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239

[4]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[5]

Qi Wang. On steady state of some Lotka-Volterra competition-diffusion-advection model. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 859-875. doi: 10.3934/dcdsb.2019193

[6]

Bo Duan, Zhengce Zhang. A two-species weak competition system of reaction-diffusion-advection with double free boundaries. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 801-829. doi: 10.3934/dcdsb.2018208

[7]

Mostafa Bendahmane, Kenneth H. Karlsen. Renormalized solutions of an anisotropic reaction-diffusion-advection system with $L^1$ data. Communications on Pure & Applied Analysis, 2006, 5 (4) : 733-762. doi: 10.3934/cpaa.2006.5.733

[8]

Linfeng Mei, Xiaoyan Zhang. On a nonlocal reaction-diffusion-advection system modeling phytoplankton growth with light and nutrients. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 221-243. doi: 10.3934/dcdsb.2012.17.221

[9]

Chris Cosner. Reaction-diffusion-advection models for the effects and evolution of dispersal. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1701-1745. doi: 10.3934/dcds.2014.34.1701

[10]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Corrigendum: Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4989-4995. doi: 10.3934/dcds.2014.34.4989

[11]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3841-3859. doi: 10.3934/dcds.2012.32.3841

[12]

Christian Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 739-776. doi: 10.3934/dcdsb.2010.14.739

[13]

Yuzo Hosono. Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 161-171. doi: 10.3934/dcdsb.2015.20.161

[14]

Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1187-1213. doi: 10.3934/mbe.2017061

[15]

Qian Guo, Xiaoqing He, Wei-Ming Ni. Global dynamics of a general Lotka-Volterra competition-diffusion system in heterogeneous environments. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6547-6573. doi: 10.3934/dcds.2020290

[16]

Zhaohai Ma, Rong Yuan, Yang Wang, Xin Wu. Multidimensional stability of planar traveling waves for the delayed nonlocal dispersal competitive Lotka-Volterra system. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2069-2092. doi: 10.3934/cpaa.2019093

[17]

S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173

[18]

Yasuhisa Saito. A global stability result for an N-species Lotka-Volterra food chain system with distributed time delays. Conference Publications, 2003, 2003 (Special) : 771-777. doi: 10.3934/proc.2003.2003.771

[19]

Li Ma, Shangjiang Guo. Bifurcation and stability of a two-species diffusive Lotka-Volterra model. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1205-1232. doi: 10.3934/cpaa.2020056

[20]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (42)
  • HTML views (140)
  • Cited by (0)

Other articles
by authors

[Back to Top]