
-
Previous Article
Large-time behavior of matured population in an age-structured model
- DCDS-B Home
- This Issue
-
Next Article
Bifurcation analysis of a general activator-inhibitor model with nonlocal dispersal
Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system
1. | College of Mathematics, Hunan University, Changsha, Hunan 410082, China |
2. | School of Mathematics and Physics, China University of Geosciences, Wuhan, Hubei 430074, China |
This paper performs an in-depth qualitative analysis of the dynamic behavior of a diffusive Lotka-Volterra type competition system with advection terms under the homogeneous Dirichlet boundary condition. First, we obtain the existence, multiplicity and explicit structure of the spatially nonhomogeneous steady-state solutions by using implicit function theorem and Lyapunov-Schmidt reduction method. Secondly, by analyzing the distribution of eigenvalues of infinitesimal generators, the stability of spatially nonhomogeneous positive steady-state solutions and the non-existence of Hopf bifurcations at spatially nonhomogeneous positive steady-state solutions are given. Finally, two concrete examples are provided to support our previous theoretical results. It should be noticed that an elliptic operator with advection term is not self-adjoint, which causes some trouble in the spatial decomposition, explicit expressions of steady-state solutions and some deductive processes related to infinitesimal generators. Moreover, unlike other work, the advection rate here depends on the spatial position, which increases some difficulties in the investigation of the principal eigenvalue.
References:
[1] |
L. C. Birch,
Experimental background to the study of the distribution and aboundance of insects: Ⅰ. The influence of temperature, moisture and food on the innate capacity for increase of three grain beetles, Ecology, 34 (1953), 698-711.
doi: 10.2307/1931333. |
[2] |
S. Busenberg and W. Huang,
Stability and Hopf bifurcation for a population delay model with diffusion effects, J. Differential Equations, 124 (1996), 80-107.
doi: 10.1006/jdeq.1996.0003. |
[3] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003.
doi: 10.1002/0470871296. |
[4] |
N. Chafee and E. F. Infante,
A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal., 4 (1974/75), 17-37.
doi: 10.1080/00036817408839081. |
[5] |
S. Chen and J. Shi,
Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Differential Equations, 253 (2012), 3440-3470.
doi: 10.1016/j.jde.2012.08.031. |
[6] |
X. Chen and Y. Lou,
Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications, Indiana Univ. Math. J., 61 (2012), 45-80.
doi: 10.1512/iumj.2012.61.4518. |
[7] |
Y. Deng, S. Peng and S. Yan,
Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differential Equations, 258 (2015), 115-147.
doi: 10.1016/j.jde.2014.09.006. |
[8] |
T. Faria,
Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254 (2001), 433-463.
doi: 10.1006/jmaa.2000.7182. |
[9] |
J.-S. Guo and C.-H. Wu,
On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012), 873-895.
doi: 10.1007/s10884-012-9267-0. |
[10] |
S. Guo, Patterns in a nonlocal time-delayed reaction-diffusion equation, Z. Angew. Math. Phys., 69 (2018), 31pp.
doi: 10.1007/s00033-017-0904-7. |
[11] |
S. Guo and S. Li, On the stability of reaction-diffusion models with nonlocal delay effect and nonlinear boundary condition, Appl. Math. Lett., 103 (2020), 7pp.
doi: 10.1016/j.aml.2019.106197. |
[12] |
S. Guo and L. Ma,
Stability and bifurcation in a delayed reaction-diffusion equation with Dirichlet boundary condition, J. Nonlinear Sci., 26 (2016), 545-580.
doi: 10.1007/s00332-016-9285-x. |
[13] |
S. Guo and J. Wu, Bifurcation Theory of Functional Differential Equations, Applied Mathematical Sciences, 184, Springer, New York, 2013.
doi: 10.1007/978-1-4614-6992-6. |
[14] |
S. Guo and S. Yan,
Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect, J. Differential Equations, 260 (2016), 781-817.
doi: 10.1016/j.jde.2015.09.031. |
[15] |
X. He and W.-M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: Heterogeneity vs. homogeneity, J. Differential Equations, 254 (2013), 528-546.
doi: 10.1016/j.jde.2012.08.032. |
[16] |
R. Hu and Y. Yuan,
Spatially nonhomogeneous equilibrium in a reaction-diffusion system with distributed delay, J. Differential Equations, 250 (2011), 2779-2806.
doi: 10.1016/j.jde.2011.01.011. |
[17] |
S. Li and S. Guo, Stability and Hopf bifurcation in a Hutchinson model, Appl. Math. Lett., 101 (2020), 7pp.
doi: 10.1016/j.aml.2019.106066. |
[18] |
W.-T. Li, X.-P. Yan and C.-H. Zhang,
Stability and Hopf bifurcation for a delayed cooperation diffusion system with Dirichlet boundary conditions, Chaos Solitons Fractals, 38 (2008), 227-237.
doi: 10.1016/j.chaos.2006.11.015. |
[19] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[20] |
Y. Lou, X.-Q. Zhao and P. Zhou, Global dynamics of a Lotka-Volterra competition-diffusionadvection system in heterogeneous environments, J. Math. Pures Appl. (9), 121 (2019),
47–82.
doi: 10.1016/j.matpur.2018.06.010. |
[21] |
L. Ma and S. Guo,
Bifurcation and stability of a two-species diffusive Lotka-Volterra model, Comm. Pure Appl. Anal., 19 (2020), 1205-1232.
doi: 10.3934/cpaa.2020056. |
[22] |
L. Ma, S. Guo and T. Chen, Dynamics of a nonlocal dispersal model with a nonlocal reaction term, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 18pp.
doi: 10.1142/S0218127418500335. |
[23] |
J. D. Murray and R. P. Sperb,
Minimum domains for spatial patterns in a class of reaction diffusion equations, J. Math. Biol., 18 (1983), 169-184.
doi: 10.1007/BF00280665. |
[24] |
W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.
doi: 10.1137/1.9781611971972.fm. |
[25] |
H. Qiu, S. Guo and S. Li, Stability and Bifurcation in a Predator-Prey System with Prey-Taxis, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30 (2020), 25pp.
doi: 10.1142/S0218127420500224. |
[26] |
R. M. Sibly and J. Hone,
Population growth rate and its determinants: An overview, Philos. Trans. R. Soc. B., 357 (2002), 1153-1170.
doi: 10.1098/rstb.2002.1117. |
[27] |
J. G. Skellam,
Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218.
doi: 10.1093/biomet/38.1-2.196. |
[28] |
Y. Su, J. Wei and J. Shi,
Hopf bifurcation in a diffusive logistic equation with mixed delayed and instantaneous density dependence, J. Dynam. Differential Equations, 24 (2012), 897-925.
doi: 10.1007/s10884-012-9268-z. |
[29] |
D. Tang and P. Zhou,
On a Lotka-Volterra competition-diffusion-advection system: Homogeneity vs heterogeneity, J. Differential Equations, 268 (2020), 1570-1599.
doi: 10.1016/j.jde.2019.09.003. |
[30] |
Q. X. Ye and Z. Y. Li, Introduction to Reaction-Diffusion Equations, Foundations of Modern Mathematics Series, Science Press, Beijing, 1990.
![]() |
[31] |
F. Yi, J. Wei and J. Shi,
Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977.
doi: 10.1016/j.jde.2008.10.024. |
[32] |
L. Zhou, Y. Tang and S. Hussein,
Stability and Hopf bifurcation for a delay competition diffusion system, Chaos Solitons Fractals, 14 (2002), 1201-1225.
doi: 10.1016/S0960-0779(02)00068-1. |
[33] |
P. Zhou and D. Xiao,
Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 275 (2018), 356-380.
doi: 10.1016/j.jfa.2018.03.006. |
[34] |
P. Zhou and X.-Q. Zhao,
Evolution of passive movement in advective environments: General boundary condition, J. Differential Equations, 264 (2018), 4176-4198.
doi: 10.1016/j.jde.2017.12.005. |
[35] |
R. Zou and S. Guo, Dynamics of a diffusive Leslie-Gower predator-prey model in spatially heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B. (2020) in press
doi: 10.3934/dcdsb.2020093. |
show all references
References:
[1] |
L. C. Birch,
Experimental background to the study of the distribution and aboundance of insects: Ⅰ. The influence of temperature, moisture and food on the innate capacity for increase of three grain beetles, Ecology, 34 (1953), 698-711.
doi: 10.2307/1931333. |
[2] |
S. Busenberg and W. Huang,
Stability and Hopf bifurcation for a population delay model with diffusion effects, J. Differential Equations, 124 (1996), 80-107.
doi: 10.1006/jdeq.1996.0003. |
[3] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003.
doi: 10.1002/0470871296. |
[4] |
N. Chafee and E. F. Infante,
A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal., 4 (1974/75), 17-37.
doi: 10.1080/00036817408839081. |
[5] |
S. Chen and J. Shi,
Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Differential Equations, 253 (2012), 3440-3470.
doi: 10.1016/j.jde.2012.08.031. |
[6] |
X. Chen and Y. Lou,
Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications, Indiana Univ. Math. J., 61 (2012), 45-80.
doi: 10.1512/iumj.2012.61.4518. |
[7] |
Y. Deng, S. Peng and S. Yan,
Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differential Equations, 258 (2015), 115-147.
doi: 10.1016/j.jde.2014.09.006. |
[8] |
T. Faria,
Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254 (2001), 433-463.
doi: 10.1006/jmaa.2000.7182. |
[9] |
J.-S. Guo and C.-H. Wu,
On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012), 873-895.
doi: 10.1007/s10884-012-9267-0. |
[10] |
S. Guo, Patterns in a nonlocal time-delayed reaction-diffusion equation, Z. Angew. Math. Phys., 69 (2018), 31pp.
doi: 10.1007/s00033-017-0904-7. |
[11] |
S. Guo and S. Li, On the stability of reaction-diffusion models with nonlocal delay effect and nonlinear boundary condition, Appl. Math. Lett., 103 (2020), 7pp.
doi: 10.1016/j.aml.2019.106197. |
[12] |
S. Guo and L. Ma,
Stability and bifurcation in a delayed reaction-diffusion equation with Dirichlet boundary condition, J. Nonlinear Sci., 26 (2016), 545-580.
doi: 10.1007/s00332-016-9285-x. |
[13] |
S. Guo and J. Wu, Bifurcation Theory of Functional Differential Equations, Applied Mathematical Sciences, 184, Springer, New York, 2013.
doi: 10.1007/978-1-4614-6992-6. |
[14] |
S. Guo and S. Yan,
Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect, J. Differential Equations, 260 (2016), 781-817.
doi: 10.1016/j.jde.2015.09.031. |
[15] |
X. He and W.-M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: Heterogeneity vs. homogeneity, J. Differential Equations, 254 (2013), 528-546.
doi: 10.1016/j.jde.2012.08.032. |
[16] |
R. Hu and Y. Yuan,
Spatially nonhomogeneous equilibrium in a reaction-diffusion system with distributed delay, J. Differential Equations, 250 (2011), 2779-2806.
doi: 10.1016/j.jde.2011.01.011. |
[17] |
S. Li and S. Guo, Stability and Hopf bifurcation in a Hutchinson model, Appl. Math. Lett., 101 (2020), 7pp.
doi: 10.1016/j.aml.2019.106066. |
[18] |
W.-T. Li, X.-P. Yan and C.-H. Zhang,
Stability and Hopf bifurcation for a delayed cooperation diffusion system with Dirichlet boundary conditions, Chaos Solitons Fractals, 38 (2008), 227-237.
doi: 10.1016/j.chaos.2006.11.015. |
[19] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[20] |
Y. Lou, X.-Q. Zhao and P. Zhou, Global dynamics of a Lotka-Volterra competition-diffusionadvection system in heterogeneous environments, J. Math. Pures Appl. (9), 121 (2019),
47–82.
doi: 10.1016/j.matpur.2018.06.010. |
[21] |
L. Ma and S. Guo,
Bifurcation and stability of a two-species diffusive Lotka-Volterra model, Comm. Pure Appl. Anal., 19 (2020), 1205-1232.
doi: 10.3934/cpaa.2020056. |
[22] |
L. Ma, S. Guo and T. Chen, Dynamics of a nonlocal dispersal model with a nonlocal reaction term, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 18pp.
doi: 10.1142/S0218127418500335. |
[23] |
J. D. Murray and R. P. Sperb,
Minimum domains for spatial patterns in a class of reaction diffusion equations, J. Math. Biol., 18 (1983), 169-184.
doi: 10.1007/BF00280665. |
[24] |
W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.
doi: 10.1137/1.9781611971972.fm. |
[25] |
H. Qiu, S. Guo and S. Li, Stability and Bifurcation in a Predator-Prey System with Prey-Taxis, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30 (2020), 25pp.
doi: 10.1142/S0218127420500224. |
[26] |
R. M. Sibly and J. Hone,
Population growth rate and its determinants: An overview, Philos. Trans. R. Soc. B., 357 (2002), 1153-1170.
doi: 10.1098/rstb.2002.1117. |
[27] |
J. G. Skellam,
Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218.
doi: 10.1093/biomet/38.1-2.196. |
[28] |
Y. Su, J. Wei and J. Shi,
Hopf bifurcation in a diffusive logistic equation with mixed delayed and instantaneous density dependence, J. Dynam. Differential Equations, 24 (2012), 897-925.
doi: 10.1007/s10884-012-9268-z. |
[29] |
D. Tang and P. Zhou,
On a Lotka-Volterra competition-diffusion-advection system: Homogeneity vs heterogeneity, J. Differential Equations, 268 (2020), 1570-1599.
doi: 10.1016/j.jde.2019.09.003. |
[30] |
Q. X. Ye and Z. Y. Li, Introduction to Reaction-Diffusion Equations, Foundations of Modern Mathematics Series, Science Press, Beijing, 1990.
![]() |
[31] |
F. Yi, J. Wei and J. Shi,
Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977.
doi: 10.1016/j.jde.2008.10.024. |
[32] |
L. Zhou, Y. Tang and S. Hussein,
Stability and Hopf bifurcation for a delay competition diffusion system, Chaos Solitons Fractals, 14 (2002), 1201-1225.
doi: 10.1016/S0960-0779(02)00068-1. |
[33] |
P. Zhou and D. Xiao,
Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 275 (2018), 356-380.
doi: 10.1016/j.jfa.2018.03.006. |
[34] |
P. Zhou and X.-Q. Zhao,
Evolution of passive movement in advective environments: General boundary condition, J. Differential Equations, 264 (2018), 4176-4198.
doi: 10.1016/j.jde.2017.12.005. |
[35] |
R. Zou and S. Guo, Dynamics of a diffusive Leslie-Gower predator-prey model in spatially heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B. (2020) in press
doi: 10.3934/dcdsb.2020093. |


Theorem | Bifurcation Value | Open Set |
Theorem 2.3 | ||
Theorem 2.4 | ||
Theorem 2.5 | ||
Theorem 2.6 |
||
Theorem 2.6 |
||
Theorem | Bifurcation Value | Open Set |
Theorem 2.3 | ||
Theorem 2.4 | ||
Theorem 2.5 | ||
Theorem 2.6 |
||
Theorem 2.6 |
||
[1] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[2] |
Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021014 |
[3] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[4] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[5] |
Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049 |
[6] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[7] |
Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020378 |
[8] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[9] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[10] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[11] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[12] |
Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020316 |
[13] |
Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126 |
[14] |
Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170 |
[15] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[16] |
Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 |
[17] |
Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020054 |
[18] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
[19] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[20] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]