[1]
|
L. C. Birch, Experimental background to the study of the distribution and aboundance of insects: Ⅰ. The influence of temperature, moisture and food on the innate capacity for increase of three grain beetles, Ecology, 34 (1953), 698-711.
doi: 10.2307/1931333.
|
[2]
|
S. Busenberg and W. Huang, Stability and Hopf bifurcation for a population delay model with diffusion effects, J. Differential Equations, 124 (1996), 80-107.
doi: 10.1006/jdeq.1996.0003.
|
[3]
|
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003.
doi: 10.1002/0470871296.
|
[4]
|
N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal., 4 (1974/75), 17-37.
doi: 10.1080/00036817408839081.
|
[5]
|
S. Chen and J. Shi, Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Differential Equations, 253 (2012), 3440-3470.
doi: 10.1016/j.jde.2012.08.031.
|
[6]
|
X. Chen and Y. Lou, Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications, Indiana Univ. Math. J., 61 (2012), 45-80.
doi: 10.1512/iumj.2012.61.4518.
|
[7]
|
Y. Deng, S. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differential Equations, 258 (2015), 115-147.
doi: 10.1016/j.jde.2014.09.006.
|
[8]
|
T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 254 (2001), 433-463.
doi: 10.1006/jmaa.2000.7182.
|
[9]
|
J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012), 873-895.
doi: 10.1007/s10884-012-9267-0.
|
[10]
|
S. Guo, Patterns in a nonlocal time-delayed reaction-diffusion equation, Z. Angew. Math. Phys., 69 (2018), 31pp.
doi: 10.1007/s00033-017-0904-7.
|
[11]
|
S. Guo and S. Li, On the stability of reaction-diffusion models with nonlocal delay effect and nonlinear boundary condition, Appl. Math. Lett., 103 (2020), 7pp.
doi: 10.1016/j.aml.2019.106197.
|
[12]
|
S. Guo and L. Ma, Stability and bifurcation in a delayed reaction-diffusion equation with Dirichlet boundary condition, J. Nonlinear Sci., 26 (2016), 545-580.
doi: 10.1007/s00332-016-9285-x.
|
[13]
|
S. Guo and J. Wu, Bifurcation Theory of Functional Differential Equations, Applied Mathematical Sciences, 184, Springer, New York, 2013.
doi: 10.1007/978-1-4614-6992-6.
|
[14]
|
S. Guo and S. Yan, Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect, J. Differential Equations, 260 (2016), 781-817.
doi: 10.1016/j.jde.2015.09.031.
|
[15]
|
X. He and W.-M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: Heterogeneity vs. homogeneity, J. Differential Equations, 254 (2013), 528-546.
doi: 10.1016/j.jde.2012.08.032.
|
[16]
|
R. Hu and Y. Yuan, Spatially nonhomogeneous equilibrium in a reaction-diffusion system with distributed delay, J. Differential Equations, 250 (2011), 2779-2806.
doi: 10.1016/j.jde.2011.01.011.
|
[17]
|
S. Li and S. Guo, Stability and Hopf bifurcation in a Hutchinson model, Appl. Math. Lett., 101 (2020), 7pp.
doi: 10.1016/j.aml.2019.106066.
|
[18]
|
W.-T. Li, X.-P. Yan and C.-H. Zhang, Stability and Hopf bifurcation for a delayed cooperation diffusion system with Dirichlet boundary conditions, Chaos Solitons Fractals, 38 (2008), 227-237.
doi: 10.1016/j.chaos.2006.11.015.
|
[19]
|
Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010.
|
[20]
|
Y. Lou, X.-Q. Zhao and P. Zhou, Global dynamics of a Lotka-Volterra competition-diffusionadvection system in heterogeneous environments, J. Math. Pures Appl. (9), 121 (2019),
47–82.
doi: 10.1016/j.matpur.2018.06.010.
|
[21]
|
L. Ma and S. Guo, Bifurcation and stability of a two-species diffusive Lotka-Volterra model, Comm. Pure Appl. Anal., 19 (2020), 1205-1232.
doi: 10.3934/cpaa.2020056.
|
[22]
|
L. Ma, S. Guo and T. Chen, Dynamics of a nonlocal dispersal model with a nonlocal reaction term, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 18pp.
doi: 10.1142/S0218127418500335.
|
[23]
|
J. D. Murray and R. P. Sperb, Minimum domains for spatial patterns in a class of reaction diffusion equations, J. Math. Biol., 18 (1983), 169-184.
doi: 10.1007/BF00280665.
|
[24]
|
W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.
doi: 10.1137/1.9781611971972.fm.
|
[25]
|
H. Qiu, S. Guo and S. Li, Stability and Bifurcation in a Predator-Prey System with Prey-Taxis, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30 (2020), 25pp.
doi: 10.1142/S0218127420500224.
|
[26]
|
R. M. Sibly and J. Hone, Population growth rate and its determinants: An overview, Philos. Trans. R. Soc. B., 357 (2002), 1153-1170.
doi: 10.1098/rstb.2002.1117.
|
[27]
|
J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218.
doi: 10.1093/biomet/38.1-2.196.
|
[28]
|
Y. Su, J. Wei and J. Shi, Hopf bifurcation in a diffusive logistic equation with mixed delayed and instantaneous density dependence, J. Dynam. Differential Equations, 24 (2012), 897-925.
doi: 10.1007/s10884-012-9268-z.
|
[29]
|
D. Tang and P. Zhou, On a Lotka-Volterra competition-diffusion-advection system: Homogeneity vs heterogeneity, J. Differential Equations, 268 (2020), 1570-1599.
doi: 10.1016/j.jde.2019.09.003.
|
[30]
|
Q. X. Ye and Z. Y. Li, Introduction to Reaction-Diffusion Equations, Foundations of Modern Mathematics Series, Science Press, Beijing, 1990.
|
[31]
|
F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977.
doi: 10.1016/j.jde.2008.10.024.
|
[32]
|
L. Zhou, Y. Tang and S. Hussein, Stability and Hopf bifurcation for a delay competition diffusion system, Chaos Solitons Fractals, 14 (2002), 1201-1225.
doi: 10.1016/S0960-0779(02)00068-1.
|
[33]
|
P. Zhou and D. Xiao, Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 275 (2018), 356-380.
doi: 10.1016/j.jfa.2018.03.006.
|
[34]
|
P. Zhou and X.-Q. Zhao, Evolution of passive movement in advective environments: General boundary condition, J. Differential Equations, 264 (2018), 4176-4198.
doi: 10.1016/j.jde.2017.12.005.
|
[35]
|
R. Zou and S. Guo, Dynamics of a diffusive Leslie-Gower predator-prey model in spatially heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B. (2020) in press
doi: 10.3934/dcdsb.2020093.
|