
-
Previous Article
Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions
- DCDS-B Home
- This Issue
-
Next Article
Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media
Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks
a. | Department of Mathematics Hunan First Normal University, Changsha, Hunan 410205, China |
b. | School of Mathematics, Southeast University, Nanjing, Jiangsu 210096, China |
c. | ool of Mathematics, Southeast University, Nanjing, Jiangsu 210096, China c Jiangsu Provincial Key Laboratory of Networked Collective Intelligence Southeast University, Nanjing, Jiangsu 210096, China |
d. | Department of Information Technology, Hunan Women's University Changsha, Hunan 410002, China |
e. | School of Mathematics and Statistics, Changsha University of Science and Technology Changsha, Hunan 410114, China |
In this article, we present several results on Finite-Time Stability (FTS) of impulsive differential inclusion. In order to investigate the FTS problem, a new concept of Finite-Time Stable Function Pair (FTSFP) is proposed. By virtue of average impulsive interval and FTSFP, two unified criteria on FTS of impulsive differential inclusion are obtained, which are effective for both the destabilizing impulses and the stabilizing impulses. In addition, the settling-time depends not only on the initial value, but also on the information of impulsive sequence. As an extension, a delay-independent FTS result of impulsive delayed differential inclusion is presented. Finally, the obtained results are applied to study the FTS of discontinuous impulsive neural networks.
References:
[1] |
N. Abada, M. Benchohra and H. Hammouche,
Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differential Equations, 246 (2009), 3834-3863.
doi: 10.1016/j.jde.2009.03.004. |
[2] |
J. Abderrahim nd E. Vilches,
A differential equation approach to implicit sweeping processes, J. Differential Equations, 266 (2019), 5168-5184.
doi: 10.1016/j.jde.2018.10.024. |
[3] |
W. Allegretto, D. Papini and M. Forti, Common asymptotic behavior of solutions and almost periodicity for discontinuous, delayed, and impulsive neural networks, IEEE Trans. Neural Netw., 21 (2010), 1110-1125. Google Scholar |
[4] |
F. Amato, G. De Tommasi and A. Pironti,
Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems, Automatica J. IFAC, 49 (2013), 2546-2550.
doi: 10.1016/j.automatica.2013.04.004. |
[5] |
R. Ambrosino, F. Calabrese, C. Cosentino and G. Tommasi,
Sufficient conditions for finite-time stability of impulsive dynamical systems, IEEE Trans. Automat. Control, 54 (2009), 861-865.
doi: 10.1109/TAC.2008.2010965. |
[6] |
J.-P. Aubin and A. Cellina., Differential Inclusions. Set-Valued Functions and Viability Theory, Grundlehren der Mathematischen Wissenschaften, 264. Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-69512-4. |
[7] |
G. Ballinger and X. Z. Liu,
Existence and uniqueness results for impulsive delay differential equation, Dyn. Contin. Discrete Impuls. Syst., 5 (1999), 579-591.
|
[8] |
J. Cao, G. Stamov, I. Stamova and S. Simeonov, Almost periodicity in impulsive fractional-order reaction-diffusion neural networks with time-varying delays, IEEE Trans. Cybern., (2020), http://dx.doi.org/10.1109/TCYB.2020.2967625. Google Scholar |
[9] |
G. Chen, Y. Yang and J. Li,
Finite time stability of a class of hybrid dynamical systems, IET Control Theory Appl., 6 (2012), 8-13.
doi: 10.1049/iet-cta.2010.0259. |
[10] |
G. Craciun,
Polynomial dynamical systems, reaction networks, and toric differential inclusions, SIAM J. Appl. Algebra Geometry, 3 (2019), 87-106.
doi: 10.1137/17M1129076. |
[11] |
S. Djebali, L. Gorniewicz and A. Ouahab,
First-order perodic impulsive semilinear differential inclusions: Existence and structure of solution sets, Math. Comput. Modelling., 52 (2010), 683-714.
doi: 10.1016/j.mcm.2010.04.016. |
[12] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Mathematics and its Applications (Soviet Series), 18. Kluwer Academic Publishers Group, Dordrecht, 1988.
doi: 10.1007/978-94-015-7793-9. |
[13] |
M. Forti and P. Nistri,
Global convergence of neural networks with discontinuous neuron activations, IEEE Trans. Circuits Systems I Fund. Theory Appl., 50 (2003), 1421-1435.
doi: 10.1109/TCSI.2003.818614. |
[14] |
M. Forti and D. Papini, Global exponential stability and global convergence in finite time of delayed neural network with infinite gain, IEEE Trans. Neural Netw., 16 (2005), 1449-1463. Google Scholar |
[15] |
H. Fujisaka and T. Yamada,
Stability theory of synchronized motion in coupled-oscillator systems, Progr. Theoret. Phys., 69 (1983), 32-47.
doi: 10.1143/PTP.69.32. |
[16] |
G. Haddad,
Monotone viable trajectories for functional differential inclusions, J. Differential Equations, 41 (1981), 1-24.
doi: 10.1016/0022-0396(81)90031-0. |
[17] |
G. Haddad,
Topological propertyies of the sets of solutions for functional differntial inclusion, Nonlinear Anal., 39 (1981), 1349-1366.
doi: 10.1016/0362-546X(81)90111-5. |
[18] |
J. P. Hespanha, D. Liberzon and A. R. Teel,
Lyapuov conditions for input-to-state stability of impulsive systems, Automatica J. IFAC, 44 (2008), 2735-2744.
doi: 10.1016/j.automatica.2008.03.021. |
[19] |
S. C. Hu, D. A. Kandilakis and N. S. Papageorgiou,
Periodic solutions for nonconvex differential inclusions, Proc. Amer. Math. Soc., 127 (1999), 89-94.
doi: 10.1090/S0002-9939-99-04338-5. |
[20] | L. Huang, Z. Guo and J. Wang, Theory and Applications of Differential Equations with Discontinuous Right-hand Sides, Science Press, Beijing, 2011. Google Scholar |
[21] |
P. Hur, B. Duiser, S. Salapaka and E. Weckster, Measuring robustness of the postural control system to a mild impulsive perturbation, IEEE Trans Neur. Syst. Rehab. Engin., 18 (2010), 461-467. Google Scholar |
[22] |
X. D. Li, D. W. C. Ho and J. D. Cao,
Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica J. IFAC, 99 (2019), 361-368.
doi: 10.1016/j.automatica.2018.10.024. |
[23] |
Y. C. Li and R. G. Sanfelice,
Finite time stability of sets for hybrid dynamical systems, Automatica J. IFAC, 100 (2019), 200-211.
doi: 10.1016/j.automatica.2018.10.016. |
[24] |
J. X. Liu, L. G. Wu, C. W. Wu, W. S. Luo and L. Franquelo,
Event-triggering dissipative control of switched stochastic systems via sliding mode, Automatica J. IFAC, 103 (2019), 261-273.
doi: 10.1016/j.automatica.2019.01.029. |
[25] |
K.-Z. Liu, X.-M. Sun, J. Liu and R. Andrew,
Stability theorems for delayed differential inclusions, IEEE Trans. Autom. Control., 61 (2016), 3215-3220.
doi: 10.1109/TAC.2015.2507782. |
[26] |
W. L. Lu and T. P. Chen,
Almost periodic dynamics of a class of delayed neural networks with discontinuous activations, Neural Comput., 20 (2008), 1065-1090.
doi: 10.1162/neco.2008.10-06-364. |
[27] |
J. Q Lu, D. W. C. Ho and J. D. Cao,
A unified synchronization criterion for impulsive dynamical networks, Automatica J. IFAC, 46 (2010), 1215-1221.
doi: 10.1016/j.automatica.2010.04.005. |
[28] |
E. Moulay and W. Perruquetti,
Finite time stability of differential inclusions, IMA J. Math. Control Inform., 22 (2005), 465-475.
doi: 10.1093/imamci/dni039. |
[29] |
E. Moulay and W. Perruquetti,
Finite time stability and stabilization of a class of conitnuous systems, J. Math. Anal. Appl., 323 (2006), 1430-1443.
doi: 10.1016/j.jmaa.2005.11.046. |
[30] |
E. Moulay, M. Dambrine, N. Yeganefar and W. Perruquetti,
Finite time stability and stabilization of time-delayed systems, Systems Control Lett., 57 (2008), 561-566.
doi: 10.1016/j.sysconle.2007.12.002. |
[31] |
J. Nygren and K. Pelckmans,
A stability criterion for switching Lur'e systems with switching-path restrictions, Automatica J. IFAC, 96 (2018), 337-341.
doi: 10.1016/j.automatica.2018.06.038. |
[32] |
B. E. Paden and S. S. Sastry,
A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulator, IEEE Trans. Circuits Syst., 34 (1987), 73-82.
doi: 10.1109/TCS.1987.1086038. |
[33] |
S. G. Peng, F. Q. Deng and Y. Zhang,
A unified Razumikhin-type criteria on input-to-state stability of time-varying impulsive delayed system, Systems Control Lett., 216 (2018), 20-26.
doi: 10.1016/j.sysconle.2018.04.002. |
[34] |
A. Polyakov,
Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Auto. Contr., 57 (2012), 2106-2100.
doi: 10.1109/TAC.2011.2179869. |
[35] |
A. Polyakov, D. Efimov and W. Perruquetti,
Finite-time and fixed-time stabilization: Implicit Lyapunov function approach, Automatica J. IFAC, 51 (2015), 332-340.
doi: 10.1016/j.automatica.2014.10.082. |
[36] |
S. T. Qin and X. P. Xue,
Periodic solutions for nonlinear differential inclusions with multivalued perturbations, J. Math, Anal. Appl., 424 (2015), 988-1005.
doi: 10.1016/j.jmaa.2014.11.057. |
[37] |
E. Serpelloni, M. Maggiore and C. Damaren,
Bang-bang hybrid stabilization of perturbed double-integrators, Automatica J. IFAC, 69 (2016), 315-323.
doi: 10.1016/j.automatica.2016.02.028. |
[38] |
S. Vaddi, K. Alfriend, S. Vadali and P. Sengupta., Formation establishment and reconfiguration using impulsive control, J. Guid Control. Dynam., 28 (2005), 262-268. Google Scholar |
[39] |
A. Vinodkumar and A. Anguraj,
Existence of random impulsive abstract neutral non-autonomous differeential inclusions with delayes, Nonlinear Anal. Hybrid Syst., 5 (2011), 413-426.
doi: 10.1016/j.nahs.2011.04.002. |
[40] |
X. T. Wu, Y. Tang and W. B. Zhang,
Input-to-state stability of impulsive stochastic delayed systems under linear assumptions, Automatica J. IFAC, 66 (2016), 195-2014.
doi: 10.1016/j.automatica.2016.01.002. |
[41] |
T. Yang, Impulsive Control Theory, Lecture Notes in Control and Information Sciences, 272. Springer-Verlag, Berlin, 2001. |
[42] |
B. Zhou,
On asymptotic stability of linear time-varying systems, Automatica J. IFAC, 68 (2016), 266-276.
doi: 10.1016/j.automatica.2015.12.030. |
show all references
References:
[1] |
N. Abada, M. Benchohra and H. Hammouche,
Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differential Equations, 246 (2009), 3834-3863.
doi: 10.1016/j.jde.2009.03.004. |
[2] |
J. Abderrahim nd E. Vilches,
A differential equation approach to implicit sweeping processes, J. Differential Equations, 266 (2019), 5168-5184.
doi: 10.1016/j.jde.2018.10.024. |
[3] |
W. Allegretto, D. Papini and M. Forti, Common asymptotic behavior of solutions and almost periodicity for discontinuous, delayed, and impulsive neural networks, IEEE Trans. Neural Netw., 21 (2010), 1110-1125. Google Scholar |
[4] |
F. Amato, G. De Tommasi and A. Pironti,
Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems, Automatica J. IFAC, 49 (2013), 2546-2550.
doi: 10.1016/j.automatica.2013.04.004. |
[5] |
R. Ambrosino, F. Calabrese, C. Cosentino and G. Tommasi,
Sufficient conditions for finite-time stability of impulsive dynamical systems, IEEE Trans. Automat. Control, 54 (2009), 861-865.
doi: 10.1109/TAC.2008.2010965. |
[6] |
J.-P. Aubin and A. Cellina., Differential Inclusions. Set-Valued Functions and Viability Theory, Grundlehren der Mathematischen Wissenschaften, 264. Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-69512-4. |
[7] |
G. Ballinger and X. Z. Liu,
Existence and uniqueness results for impulsive delay differential equation, Dyn. Contin. Discrete Impuls. Syst., 5 (1999), 579-591.
|
[8] |
J. Cao, G. Stamov, I. Stamova and S. Simeonov, Almost periodicity in impulsive fractional-order reaction-diffusion neural networks with time-varying delays, IEEE Trans. Cybern., (2020), http://dx.doi.org/10.1109/TCYB.2020.2967625. Google Scholar |
[9] |
G. Chen, Y. Yang and J. Li,
Finite time stability of a class of hybrid dynamical systems, IET Control Theory Appl., 6 (2012), 8-13.
doi: 10.1049/iet-cta.2010.0259. |
[10] |
G. Craciun,
Polynomial dynamical systems, reaction networks, and toric differential inclusions, SIAM J. Appl. Algebra Geometry, 3 (2019), 87-106.
doi: 10.1137/17M1129076. |
[11] |
S. Djebali, L. Gorniewicz and A. Ouahab,
First-order perodic impulsive semilinear differential inclusions: Existence and structure of solution sets, Math. Comput. Modelling., 52 (2010), 683-714.
doi: 10.1016/j.mcm.2010.04.016. |
[12] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Mathematics and its Applications (Soviet Series), 18. Kluwer Academic Publishers Group, Dordrecht, 1988.
doi: 10.1007/978-94-015-7793-9. |
[13] |
M. Forti and P. Nistri,
Global convergence of neural networks with discontinuous neuron activations, IEEE Trans. Circuits Systems I Fund. Theory Appl., 50 (2003), 1421-1435.
doi: 10.1109/TCSI.2003.818614. |
[14] |
M. Forti and D. Papini, Global exponential stability and global convergence in finite time of delayed neural network with infinite gain, IEEE Trans. Neural Netw., 16 (2005), 1449-1463. Google Scholar |
[15] |
H. Fujisaka and T. Yamada,
Stability theory of synchronized motion in coupled-oscillator systems, Progr. Theoret. Phys., 69 (1983), 32-47.
doi: 10.1143/PTP.69.32. |
[16] |
G. Haddad,
Monotone viable trajectories for functional differential inclusions, J. Differential Equations, 41 (1981), 1-24.
doi: 10.1016/0022-0396(81)90031-0. |
[17] |
G. Haddad,
Topological propertyies of the sets of solutions for functional differntial inclusion, Nonlinear Anal., 39 (1981), 1349-1366.
doi: 10.1016/0362-546X(81)90111-5. |
[18] |
J. P. Hespanha, D. Liberzon and A. R. Teel,
Lyapuov conditions for input-to-state stability of impulsive systems, Automatica J. IFAC, 44 (2008), 2735-2744.
doi: 10.1016/j.automatica.2008.03.021. |
[19] |
S. C. Hu, D. A. Kandilakis and N. S. Papageorgiou,
Periodic solutions for nonconvex differential inclusions, Proc. Amer. Math. Soc., 127 (1999), 89-94.
doi: 10.1090/S0002-9939-99-04338-5. |
[20] | L. Huang, Z. Guo and J. Wang, Theory and Applications of Differential Equations with Discontinuous Right-hand Sides, Science Press, Beijing, 2011. Google Scholar |
[21] |
P. Hur, B. Duiser, S. Salapaka and E. Weckster, Measuring robustness of the postural control system to a mild impulsive perturbation, IEEE Trans Neur. Syst. Rehab. Engin., 18 (2010), 461-467. Google Scholar |
[22] |
X. D. Li, D. W. C. Ho and J. D. Cao,
Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica J. IFAC, 99 (2019), 361-368.
doi: 10.1016/j.automatica.2018.10.024. |
[23] |
Y. C. Li and R. G. Sanfelice,
Finite time stability of sets for hybrid dynamical systems, Automatica J. IFAC, 100 (2019), 200-211.
doi: 10.1016/j.automatica.2018.10.016. |
[24] |
J. X. Liu, L. G. Wu, C. W. Wu, W. S. Luo and L. Franquelo,
Event-triggering dissipative control of switched stochastic systems via sliding mode, Automatica J. IFAC, 103 (2019), 261-273.
doi: 10.1016/j.automatica.2019.01.029. |
[25] |
K.-Z. Liu, X.-M. Sun, J. Liu and R. Andrew,
Stability theorems for delayed differential inclusions, IEEE Trans. Autom. Control., 61 (2016), 3215-3220.
doi: 10.1109/TAC.2015.2507782. |
[26] |
W. L. Lu and T. P. Chen,
Almost periodic dynamics of a class of delayed neural networks with discontinuous activations, Neural Comput., 20 (2008), 1065-1090.
doi: 10.1162/neco.2008.10-06-364. |
[27] |
J. Q Lu, D. W. C. Ho and J. D. Cao,
A unified synchronization criterion for impulsive dynamical networks, Automatica J. IFAC, 46 (2010), 1215-1221.
doi: 10.1016/j.automatica.2010.04.005. |
[28] |
E. Moulay and W. Perruquetti,
Finite time stability of differential inclusions, IMA J. Math. Control Inform., 22 (2005), 465-475.
doi: 10.1093/imamci/dni039. |
[29] |
E. Moulay and W. Perruquetti,
Finite time stability and stabilization of a class of conitnuous systems, J. Math. Anal. Appl., 323 (2006), 1430-1443.
doi: 10.1016/j.jmaa.2005.11.046. |
[30] |
E. Moulay, M. Dambrine, N. Yeganefar and W. Perruquetti,
Finite time stability and stabilization of time-delayed systems, Systems Control Lett., 57 (2008), 561-566.
doi: 10.1016/j.sysconle.2007.12.002. |
[31] |
J. Nygren and K. Pelckmans,
A stability criterion for switching Lur'e systems with switching-path restrictions, Automatica J. IFAC, 96 (2018), 337-341.
doi: 10.1016/j.automatica.2018.06.038. |
[32] |
B. E. Paden and S. S. Sastry,
A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulator, IEEE Trans. Circuits Syst., 34 (1987), 73-82.
doi: 10.1109/TCS.1987.1086038. |
[33] |
S. G. Peng, F. Q. Deng and Y. Zhang,
A unified Razumikhin-type criteria on input-to-state stability of time-varying impulsive delayed system, Systems Control Lett., 216 (2018), 20-26.
doi: 10.1016/j.sysconle.2018.04.002. |
[34] |
A. Polyakov,
Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Auto. Contr., 57 (2012), 2106-2100.
doi: 10.1109/TAC.2011.2179869. |
[35] |
A. Polyakov, D. Efimov and W. Perruquetti,
Finite-time and fixed-time stabilization: Implicit Lyapunov function approach, Automatica J. IFAC, 51 (2015), 332-340.
doi: 10.1016/j.automatica.2014.10.082. |
[36] |
S. T. Qin and X. P. Xue,
Periodic solutions for nonlinear differential inclusions with multivalued perturbations, J. Math, Anal. Appl., 424 (2015), 988-1005.
doi: 10.1016/j.jmaa.2014.11.057. |
[37] |
E. Serpelloni, M. Maggiore and C. Damaren,
Bang-bang hybrid stabilization of perturbed double-integrators, Automatica J. IFAC, 69 (2016), 315-323.
doi: 10.1016/j.automatica.2016.02.028. |
[38] |
S. Vaddi, K. Alfriend, S. Vadali and P. Sengupta., Formation establishment and reconfiguration using impulsive control, J. Guid Control. Dynam., 28 (2005), 262-268. Google Scholar |
[39] |
A. Vinodkumar and A. Anguraj,
Existence of random impulsive abstract neutral non-autonomous differeential inclusions with delayes, Nonlinear Anal. Hybrid Syst., 5 (2011), 413-426.
doi: 10.1016/j.nahs.2011.04.002. |
[40] |
X. T. Wu, Y. Tang and W. B. Zhang,
Input-to-state stability of impulsive stochastic delayed systems under linear assumptions, Automatica J. IFAC, 66 (2016), 195-2014.
doi: 10.1016/j.automatica.2016.01.002. |
[41] |
T. Yang, Impulsive Control Theory, Lecture Notes in Control and Information Sciences, 272. Springer-Verlag, Berlin, 2001. |
[42] |
B. Zhou,
On asymptotic stability of linear time-varying systems, Automatica J. IFAC, 68 (2016), 266-276.
doi: 10.1016/j.automatica.2015.12.030. |


[1] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[2] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[3] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[4] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[5] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[6] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[7] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[8] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[9] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[10] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[11] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[12] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[13] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[14] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[15] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[16] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[17] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[18] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
[19] |
Jean Dolbeault, Maria J. Esteban, Michał Kowalczyk, Michael Loss. Improved interpolation inequalities on the sphere. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 695-724. doi: 10.3934/dcdss.2014.7.695 |
[20] |
Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]