doi: 10.3934/dcdsb.2020200

Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks

a. 

Department of Mathematics Hunan First Normal University, Changsha, Hunan 410205, China

b. 

School of Mathematics, Southeast University, Nanjing, Jiangsu 210096, China

c. 

ool of Mathematics, Southeast University, Nanjing, Jiangsu 210096, China c Jiangsu Provincial Key Laboratory of Networked Collective Intelligence Southeast University, Nanjing, Jiangsu 210096, China

d. 

Department of Information Technology, Hunan Women's University Changsha, Hunan 410002, China

e. 

School of Mathematics and Statistics, Changsha University of Science and Technology Changsha, Hunan 410114, China

* Corresponding author: Jinde Cao

Received  December 2019 Revised  March 2020 Published  June 2020

Fund Project: This work was supported in part by NSF of China(No.11601143, 61833005), Jiangsu Provincial Key Laboratory of Networked Collective Intelligence (No.BM2017002), China Postdoctoral Science Foundation (No.2018M632207) and Teaching Reform Project of Ordinary Colleges and Universities in Hunan Province (No. 844)

In this article, we present several results on Finite-Time Stability (FTS) of impulsive differential inclusion. In order to investigate the FTS problem, a new concept of Finite-Time Stable Function Pair (FTSFP) is proposed. By virtue of average impulsive interval and FTSFP, two unified criteria on FTS of impulsive differential inclusion are obtained, which are effective for both the destabilizing impulses and the stabilizing impulses. In addition, the settling-time depends not only on the initial value, but also on the information of impulsive sequence. As an extension, a delay-independent FTS result of impulsive delayed differential inclusion is presented. Finally, the obtained results are applied to study the FTS of discontinuous impulsive neural networks.

Citation: Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020200
References:
[1]

N. AbadaM. Benchohra and H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differential Equations, 246 (2009), 3834-3863.  doi: 10.1016/j.jde.2009.03.004.  Google Scholar

[2]

J. Abderrahim nd E. Vilches, A differential equation approach to implicit sweeping processes, J. Differential Equations, 266 (2019), 5168-5184.  doi: 10.1016/j.jde.2018.10.024.  Google Scholar

[3]

W. AllegrettoD. Papini and M. Forti, Common asymptotic behavior of solutions and almost periodicity for discontinuous, delayed, and impulsive neural networks, IEEE Trans. Neural Netw., 21 (2010), 1110-1125.   Google Scholar

[4]

F. AmatoG. De Tommasi and A. Pironti, Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems, Automatica J. IFAC, 49 (2013), 2546-2550.  doi: 10.1016/j.automatica.2013.04.004.  Google Scholar

[5]

R. AmbrosinoF. CalabreseC. Cosentino and G. Tommasi, Sufficient conditions for finite-time stability of impulsive dynamical systems, IEEE Trans. Automat. Control, 54 (2009), 861-865.  doi: 10.1109/TAC.2008.2010965.  Google Scholar

[6]

J.-P. Aubin and A. Cellina., Differential Inclusions. Set-Valued Functions and Viability Theory, Grundlehren der Mathematischen Wissenschaften, 264. Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69512-4.  Google Scholar

[7]

G. Ballinger and X. Z. Liu, Existence and uniqueness results for impulsive delay differential equation, Dyn. Contin. Discrete Impuls. Syst., 5 (1999), 579-591.   Google Scholar

[8]

J. Cao, G. Stamov, I. Stamova and S. Simeonov, Almost periodicity in impulsive fractional-order reaction-diffusion neural networks with time-varying delays, IEEE Trans. Cybern., (2020), http://dx.doi.org/10.1109/TCYB.2020.2967625. Google Scholar

[9]

G. ChenY. Yang and J. Li, Finite time stability of a class of hybrid dynamical systems, IET Control Theory Appl., 6 (2012), 8-13.  doi: 10.1049/iet-cta.2010.0259.  Google Scholar

[10]

G. Craciun, Polynomial dynamical systems, reaction networks, and toric differential inclusions, SIAM J. Appl. Algebra Geometry, 3 (2019), 87-106.  doi: 10.1137/17M1129076.  Google Scholar

[11]

S. DjebaliL. Gorniewicz and A. Ouahab, First-order perodic impulsive semilinear differential inclusions: Existence and structure of solution sets, Math. Comput. Modelling., 52 (2010), 683-714.  doi: 10.1016/j.mcm.2010.04.016.  Google Scholar

[12]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Mathematics and its Applications (Soviet Series), 18. Kluwer Academic Publishers Group, Dordrecht, 1988. doi: 10.1007/978-94-015-7793-9.  Google Scholar

[13]

M. Forti and P. Nistri, Global convergence of neural networks with discontinuous neuron activations, IEEE Trans. Circuits Systems I Fund. Theory Appl., 50 (2003), 1421-1435.  doi: 10.1109/TCSI.2003.818614.  Google Scholar

[14]

M. Forti and D. Papini, Global exponential stability and global convergence in finite time of delayed neural network with infinite gain, IEEE Trans. Neural Netw., 16 (2005), 1449-1463.   Google Scholar

[15]

H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems, Progr. Theoret. Phys., 69 (1983), 32-47.  doi: 10.1143/PTP.69.32.  Google Scholar

[16]

G. Haddad, Monotone viable trajectories for functional differential inclusions, J. Differential Equations, 41 (1981), 1-24.  doi: 10.1016/0022-0396(81)90031-0.  Google Scholar

[17]

G. Haddad, Topological propertyies of the sets of solutions for functional differntial inclusion, Nonlinear Anal., 39 (1981), 1349-1366.  doi: 10.1016/0362-546X(81)90111-5.  Google Scholar

[18]

J. P. HespanhaD. Liberzon and A. R. Teel, Lyapuov conditions for input-to-state stability of impulsive systems, Automatica J. IFAC, 44 (2008), 2735-2744.  doi: 10.1016/j.automatica.2008.03.021.  Google Scholar

[19]

S. C. HuD. A. Kandilakis and N. S. Papageorgiou, Periodic solutions for nonconvex differential inclusions, Proc. Amer. Math. Soc., 127 (1999), 89-94.  doi: 10.1090/S0002-9939-99-04338-5.  Google Scholar

[20] L. HuangZ. Guo and J. Wang, Theory and Applications of Differential Equations with Discontinuous Right-hand Sides, Science Press, Beijing, 2011.   Google Scholar
[21]

P. HurB. DuiserS. Salapaka and E. Weckster, Measuring robustness of the postural control system to a mild impulsive perturbation, IEEE Trans Neur. Syst. Rehab. Engin., 18 (2010), 461-467.   Google Scholar

[22]

X. D. LiD. W. C. Ho and J. D. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica J. IFAC, 99 (2019), 361-368.  doi: 10.1016/j.automatica.2018.10.024.  Google Scholar

[23]

Y. C. Li and R. G. Sanfelice, Finite time stability of sets for hybrid dynamical systems, Automatica J. IFAC, 100 (2019), 200-211.  doi: 10.1016/j.automatica.2018.10.016.  Google Scholar

[24]

J. X. LiuL. G. WuC. W. WuW. S. Luo and L. Franquelo, Event-triggering dissipative control of switched stochastic systems via sliding mode, Automatica J. IFAC, 103 (2019), 261-273.  doi: 10.1016/j.automatica.2019.01.029.  Google Scholar

[25]

K.-Z. LiuX.-M. SunJ. Liu and R. Andrew, Stability theorems for delayed differential inclusions, IEEE Trans. Autom. Control., 61 (2016), 3215-3220.  doi: 10.1109/TAC.2015.2507782.  Google Scholar

[26]

W. L. Lu and T. P. Chen, Almost periodic dynamics of a class of delayed neural networks with discontinuous activations, Neural Comput., 20 (2008), 1065-1090.  doi: 10.1162/neco.2008.10-06-364.  Google Scholar

[27]

J. Q LuD. W. C. Ho and J. D. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica J. IFAC, 46 (2010), 1215-1221.  doi: 10.1016/j.automatica.2010.04.005.  Google Scholar

[28]

E. Moulay and W. Perruquetti, Finite time stability of differential inclusions, IMA J. Math. Control Inform., 22 (2005), 465-475.  doi: 10.1093/imamci/dni039.  Google Scholar

[29]

E. Moulay and W. Perruquetti, Finite time stability and stabilization of a class of conitnuous systems, J. Math. Anal. Appl., 323 (2006), 1430-1443.  doi: 10.1016/j.jmaa.2005.11.046.  Google Scholar

[30]

E. MoulayM. DambrineN. Yeganefar and W. Perruquetti, Finite time stability and stabilization of time-delayed systems, Systems Control Lett., 57 (2008), 561-566.  doi: 10.1016/j.sysconle.2007.12.002.  Google Scholar

[31]

J. Nygren and K. Pelckmans, A stability criterion for switching Lur'e systems with switching-path restrictions, Automatica J. IFAC, 96 (2018), 337-341.  doi: 10.1016/j.automatica.2018.06.038.  Google Scholar

[32]

B. E. Paden and S. S. Sastry, A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulator, IEEE Trans. Circuits Syst., 34 (1987), 73-82.  doi: 10.1109/TCS.1987.1086038.  Google Scholar

[33]

S. G. PengF. Q. Deng and Y. Zhang, A unified Razumikhin-type criteria on input-to-state stability of time-varying impulsive delayed system, Systems Control Lett., 216 (2018), 20-26.  doi: 10.1016/j.sysconle.2018.04.002.  Google Scholar

[34]

A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Auto. Contr., 57 (2012), 2106-2100.  doi: 10.1109/TAC.2011.2179869.  Google Scholar

[35]

A. PolyakovD. Efimov and W. Perruquetti, Finite-time and fixed-time stabilization: Implicit Lyapunov function approach, Automatica J. IFAC, 51 (2015), 332-340.  doi: 10.1016/j.automatica.2014.10.082.  Google Scholar

[36]

S. T. Qin and X. P. Xue, Periodic solutions for nonlinear differential inclusions with multivalued perturbations, J. Math, Anal. Appl., 424 (2015), 988-1005.  doi: 10.1016/j.jmaa.2014.11.057.  Google Scholar

[37]

E. SerpelloniM. Maggiore and C. Damaren, Bang-bang hybrid stabilization of perturbed double-integrators, Automatica J. IFAC, 69 (2016), 315-323.  doi: 10.1016/j.automatica.2016.02.028.  Google Scholar

[38]

S. VaddiK. AlfriendS. Vadali and P. Sengupta., Formation establishment and reconfiguration using impulsive control, J. Guid Control. Dynam., 28 (2005), 262-268.   Google Scholar

[39]

A. Vinodkumar and A. Anguraj, Existence of random impulsive abstract neutral non-autonomous differeential inclusions with delayes, Nonlinear Anal. Hybrid Syst., 5 (2011), 413-426.  doi: 10.1016/j.nahs.2011.04.002.  Google Scholar

[40]

X. T. WuY. Tang and W. B. Zhang, Input-to-state stability of impulsive stochastic delayed systems under linear assumptions, Automatica J. IFAC, 66 (2016), 195-2014.  doi: 10.1016/j.automatica.2016.01.002.  Google Scholar

[41]

T. Yang, Impulsive Control Theory, Lecture Notes in Control and Information Sciences, 272. Springer-Verlag, Berlin, 2001.  Google Scholar

[42]

B. Zhou, On asymptotic stability of linear time-varying systems, Automatica J. IFAC, 68 (2016), 266-276.  doi: 10.1016/j.automatica.2015.12.030.  Google Scholar

show all references

References:
[1]

N. AbadaM. Benchohra and H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differential Equations, 246 (2009), 3834-3863.  doi: 10.1016/j.jde.2009.03.004.  Google Scholar

[2]

J. Abderrahim nd E. Vilches, A differential equation approach to implicit sweeping processes, J. Differential Equations, 266 (2019), 5168-5184.  doi: 10.1016/j.jde.2018.10.024.  Google Scholar

[3]

W. AllegrettoD. Papini and M. Forti, Common asymptotic behavior of solutions and almost periodicity for discontinuous, delayed, and impulsive neural networks, IEEE Trans. Neural Netw., 21 (2010), 1110-1125.   Google Scholar

[4]

F. AmatoG. De Tommasi and A. Pironti, Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems, Automatica J. IFAC, 49 (2013), 2546-2550.  doi: 10.1016/j.automatica.2013.04.004.  Google Scholar

[5]

R. AmbrosinoF. CalabreseC. Cosentino and G. Tommasi, Sufficient conditions for finite-time stability of impulsive dynamical systems, IEEE Trans. Automat. Control, 54 (2009), 861-865.  doi: 10.1109/TAC.2008.2010965.  Google Scholar

[6]

J.-P. Aubin and A. Cellina., Differential Inclusions. Set-Valued Functions and Viability Theory, Grundlehren der Mathematischen Wissenschaften, 264. Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69512-4.  Google Scholar

[7]

G. Ballinger and X. Z. Liu, Existence and uniqueness results for impulsive delay differential equation, Dyn. Contin. Discrete Impuls. Syst., 5 (1999), 579-591.   Google Scholar

[8]

J. Cao, G. Stamov, I. Stamova and S. Simeonov, Almost periodicity in impulsive fractional-order reaction-diffusion neural networks with time-varying delays, IEEE Trans. Cybern., (2020), http://dx.doi.org/10.1109/TCYB.2020.2967625. Google Scholar

[9]

G. ChenY. Yang and J. Li, Finite time stability of a class of hybrid dynamical systems, IET Control Theory Appl., 6 (2012), 8-13.  doi: 10.1049/iet-cta.2010.0259.  Google Scholar

[10]

G. Craciun, Polynomial dynamical systems, reaction networks, and toric differential inclusions, SIAM J. Appl. Algebra Geometry, 3 (2019), 87-106.  doi: 10.1137/17M1129076.  Google Scholar

[11]

S. DjebaliL. Gorniewicz and A. Ouahab, First-order perodic impulsive semilinear differential inclusions: Existence and structure of solution sets, Math. Comput. Modelling., 52 (2010), 683-714.  doi: 10.1016/j.mcm.2010.04.016.  Google Scholar

[12]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Mathematics and its Applications (Soviet Series), 18. Kluwer Academic Publishers Group, Dordrecht, 1988. doi: 10.1007/978-94-015-7793-9.  Google Scholar

[13]

M. Forti and P. Nistri, Global convergence of neural networks with discontinuous neuron activations, IEEE Trans. Circuits Systems I Fund. Theory Appl., 50 (2003), 1421-1435.  doi: 10.1109/TCSI.2003.818614.  Google Scholar

[14]

M. Forti and D. Papini, Global exponential stability and global convergence in finite time of delayed neural network with infinite gain, IEEE Trans. Neural Netw., 16 (2005), 1449-1463.   Google Scholar

[15]

H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems, Progr. Theoret. Phys., 69 (1983), 32-47.  doi: 10.1143/PTP.69.32.  Google Scholar

[16]

G. Haddad, Monotone viable trajectories for functional differential inclusions, J. Differential Equations, 41 (1981), 1-24.  doi: 10.1016/0022-0396(81)90031-0.  Google Scholar

[17]

G. Haddad, Topological propertyies of the sets of solutions for functional differntial inclusion, Nonlinear Anal., 39 (1981), 1349-1366.  doi: 10.1016/0362-546X(81)90111-5.  Google Scholar

[18]

J. P. HespanhaD. Liberzon and A. R. Teel, Lyapuov conditions for input-to-state stability of impulsive systems, Automatica J. IFAC, 44 (2008), 2735-2744.  doi: 10.1016/j.automatica.2008.03.021.  Google Scholar

[19]

S. C. HuD. A. Kandilakis and N. S. Papageorgiou, Periodic solutions for nonconvex differential inclusions, Proc. Amer. Math. Soc., 127 (1999), 89-94.  doi: 10.1090/S0002-9939-99-04338-5.  Google Scholar

[20] L. HuangZ. Guo and J. Wang, Theory and Applications of Differential Equations with Discontinuous Right-hand Sides, Science Press, Beijing, 2011.   Google Scholar
[21]

P. HurB. DuiserS. Salapaka and E. Weckster, Measuring robustness of the postural control system to a mild impulsive perturbation, IEEE Trans Neur. Syst. Rehab. Engin., 18 (2010), 461-467.   Google Scholar

[22]

X. D. LiD. W. C. Ho and J. D. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica J. IFAC, 99 (2019), 361-368.  doi: 10.1016/j.automatica.2018.10.024.  Google Scholar

[23]

Y. C. Li and R. G. Sanfelice, Finite time stability of sets for hybrid dynamical systems, Automatica J. IFAC, 100 (2019), 200-211.  doi: 10.1016/j.automatica.2018.10.016.  Google Scholar

[24]

J. X. LiuL. G. WuC. W. WuW. S. Luo and L. Franquelo, Event-triggering dissipative control of switched stochastic systems via sliding mode, Automatica J. IFAC, 103 (2019), 261-273.  doi: 10.1016/j.automatica.2019.01.029.  Google Scholar

[25]

K.-Z. LiuX.-M. SunJ. Liu and R. Andrew, Stability theorems for delayed differential inclusions, IEEE Trans. Autom. Control., 61 (2016), 3215-3220.  doi: 10.1109/TAC.2015.2507782.  Google Scholar

[26]

W. L. Lu and T. P. Chen, Almost periodic dynamics of a class of delayed neural networks with discontinuous activations, Neural Comput., 20 (2008), 1065-1090.  doi: 10.1162/neco.2008.10-06-364.  Google Scholar

[27]

J. Q LuD. W. C. Ho and J. D. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica J. IFAC, 46 (2010), 1215-1221.  doi: 10.1016/j.automatica.2010.04.005.  Google Scholar

[28]

E. Moulay and W. Perruquetti, Finite time stability of differential inclusions, IMA J. Math. Control Inform., 22 (2005), 465-475.  doi: 10.1093/imamci/dni039.  Google Scholar

[29]

E. Moulay and W. Perruquetti, Finite time stability and stabilization of a class of conitnuous systems, J. Math. Anal. Appl., 323 (2006), 1430-1443.  doi: 10.1016/j.jmaa.2005.11.046.  Google Scholar

[30]

E. MoulayM. DambrineN. Yeganefar and W. Perruquetti, Finite time stability and stabilization of time-delayed systems, Systems Control Lett., 57 (2008), 561-566.  doi: 10.1016/j.sysconle.2007.12.002.  Google Scholar

[31]

J. Nygren and K. Pelckmans, A stability criterion for switching Lur'e systems with switching-path restrictions, Automatica J. IFAC, 96 (2018), 337-341.  doi: 10.1016/j.automatica.2018.06.038.  Google Scholar

[32]

B. E. Paden and S. S. Sastry, A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulator, IEEE Trans. Circuits Syst., 34 (1987), 73-82.  doi: 10.1109/TCS.1987.1086038.  Google Scholar

[33]

S. G. PengF. Q. Deng and Y. Zhang, A unified Razumikhin-type criteria on input-to-state stability of time-varying impulsive delayed system, Systems Control Lett., 216 (2018), 20-26.  doi: 10.1016/j.sysconle.2018.04.002.  Google Scholar

[34]

A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Auto. Contr., 57 (2012), 2106-2100.  doi: 10.1109/TAC.2011.2179869.  Google Scholar

[35]

A. PolyakovD. Efimov and W. Perruquetti, Finite-time and fixed-time stabilization: Implicit Lyapunov function approach, Automatica J. IFAC, 51 (2015), 332-340.  doi: 10.1016/j.automatica.2014.10.082.  Google Scholar

[36]

S. T. Qin and X. P. Xue, Periodic solutions for nonlinear differential inclusions with multivalued perturbations, J. Math, Anal. Appl., 424 (2015), 988-1005.  doi: 10.1016/j.jmaa.2014.11.057.  Google Scholar

[37]

E. SerpelloniM. Maggiore and C. Damaren, Bang-bang hybrid stabilization of perturbed double-integrators, Automatica J. IFAC, 69 (2016), 315-323.  doi: 10.1016/j.automatica.2016.02.028.  Google Scholar

[38]

S. VaddiK. AlfriendS. Vadali and P. Sengupta., Formation establishment and reconfiguration using impulsive control, J. Guid Control. Dynam., 28 (2005), 262-268.   Google Scholar

[39]

A. Vinodkumar and A. Anguraj, Existence of random impulsive abstract neutral non-autonomous differeential inclusions with delayes, Nonlinear Anal. Hybrid Syst., 5 (2011), 413-426.  doi: 10.1016/j.nahs.2011.04.002.  Google Scholar

[40]

X. T. WuY. Tang and W. B. Zhang, Input-to-state stability of impulsive stochastic delayed systems under linear assumptions, Automatica J. IFAC, 66 (2016), 195-2014.  doi: 10.1016/j.automatica.2016.01.002.  Google Scholar

[41]

T. Yang, Impulsive Control Theory, Lecture Notes in Control and Information Sciences, 272. Springer-Verlag, Berlin, 2001.  Google Scholar

[42]

B. Zhou, On asymptotic stability of linear time-varying systems, Automatica J. IFAC, 68 (2016), 266-276.  doi: 10.1016/j.automatica.2015.12.030.  Google Scholar

Figure 1.  The state trajectories of $ x_{i}(t) $ $ (i = 1,2) $ without impulsive effects in Example 1
Figure 2.  The trajectories of states $ x_{i}(t) $ $ (i = 1,2) $ with different impulsive sequences in Example 1
[1]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[2]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[3]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[4]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[7]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[8]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[9]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[10]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[11]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[12]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[15]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[16]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[17]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[18]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[19]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[20]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (66)
  • HTML views (211)
  • Cited by (0)

Other articles
by authors

[Back to Top]