
-
Previous Article
Properties of basins of attraction for planar discrete cooperative maps
- DCDS-B Home
- This Issue
-
Next Article
Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks
Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions
School of Mathematics and Physics, China University of Geosciences, Wuhan, Hubei 430074, China |
This paper is devoted to investigate the dynamics of a stochastic susceptible-infected-susceptible epidemic model with nonlinear incidence rate and three independent Brownian motions. By defining a threshold $ \lambda $, it is proved that if $ \lambda>0 $, the disease is permanent and there is a stationary distribution. And when $ \lambda<0 $, we show that the disease goes to extinction and the susceptible population weakly converges to a boundary distribution. Moreover, the existence of the stationary distribution is obtained and some numerical simulations are performed to illustrate our results. As a result, appropriate intensities of white noises make the susceptible and infected individuals fluctuate around their deterministic steady–state values; the larger the intensities of the white noises are, the larger amplitude of their fluctuations; but too large intensities of white noises may make both of the susceptible and infected individuals go to extinction.
References:
[1] |
J. H. Bao and J. H. Shao,
Permanence and extinction of regime-switching predator-prey models, SIAM Journal on Mathematical Analysis, 48 (2016), 725-739.
doi: 10.1137/15M1024512. |
[2] |
S. Y. Cai, Y. M. Cai and X. R. Mao,
A stochastic differential equation SIS epidemic model with two independent Brownian motions, Journal of Mathematical Analysis and Applications, 474 (2019), 1536-1550.
doi: 10.1016/j.jmaa.2019.02.039. |
[3] |
Y. L. Chen, B. Y. Wen and Z. D. Teng,
The global dynamics for a stochastic SIS epidemic model with isolation, Physica A, 492 (2018), 1604-1624.
doi: 10.1016/j.physa.2017.11.085. |
[4] |
N. H. Du, N. T. Dieu and N. N. Nhu,
Conditions for permanence and ergodicity of certain SIR epidemic models, Acta Appl. Math., 160 (2019), 81-99.
doi: 10.1007/s10440-018-0196-8. |
[5] |
N. H. Du and N. N. Nhu,
Permanence and extinction of certain stochastic SIR models perturbed by a complex type of noises, Applied Mathematics Letters, 64 (2017), 223-230.
doi: 10.1016/j.aml.2016.09.012. |
[6] |
J. P. Gao and S. J. Guo, Patterns in a modified Leslie-Gower model with Beddington-DeAngelis functional response and nonlocal prey competition, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30 (2020), 2050074, 28 pp
doi: 10.1142/S0218127420500741. |
[7] |
A. Gray, D. Greenhalgh, L. Hu, X. Mao and J. Pan,
A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876-902.
doi: 10.1137/10081856X. |
[8] |
A. Gray, D. Greenhalgh, X. R. Mao and J. F. Pan,
The SIS epidemic model with Markovian switchiing, J. Math. Anal. Appl., 394 (2012), 496-516.
doi: 10.1016/j.jmaa.2012.05.029. |
[9] |
D. J. Higham,
An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546.
doi: 10.1137/S0036144500378302. |
[10] |
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam-New York, Kodansha, Ltd., Tokyo, 1981. |
[11] |
C. Y. Ji and D. Q. Jiang,
Threshold behaviour of a stochastic SIR model, Applied Mathematical Modelling, 38 (2014), 5067-5079.
doi: 10.1016/j.apm.2014.03.037. |
[12] |
R. Khasminskii, Stochastic Stability of Differential Equations, Stochastic Modelling and Applied Probability, 66. Springer, Heidelberg, 2012.
doi: 10.1007/978-3-642-23280-0. |
[13] |
A. Lahrouz, L. Omari and D. Kioach,
Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model, Nonlinear Anal. Model. Control, 16 (2011), 59-76.
doi: 10.15388/NA.16.1.14115. |
[14] |
A. Lahrouz, L. Omari, D. Kioach and A. Belmaâti,
Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination, Applied Mathematics and Computation, 218 (2012), 6519-6525.
doi: 10.1016/j.amc.2011.12.024. |
[15] |
G. J. Lan, Y. L. Huang, C. J. Wei and S. W. Zhang, A stochastic SIS epidemic model with saturating contact rate, Physica A, 529 (2019), 121504, 14 pp.
doi: 10.1016/j.physa.2019.121504. |
[16] |
S. Z. Li and S. J. Guo, Random attractors for stochastic semilinear degenerate parabolic equations with delay, Physica A, 550 (2020), 124164.
doi: 10.1016/j.physa.2020.124164. |
[17] |
X. Li, A. Gray, D. Jiang and X. Mao,
Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, Journal of Mathematical Analysis and Applications, 376 (1) (2011), 11-28.
doi: 10.1016/j.lmaa.2010.10.053. |
[18] |
Q. Liu and Q. M. Chen,
Dynamics of a stochastic SIR epidemic model with saturated incidence, Applied Mathematics and Computation, 282 (2016), 155-166.
doi: 10.1016/j.amc.2016.02.022. |
[19] |
Q. Liu, D. Q. Jiang, T. Hayat and A. Alsaedi, Threshold dynamics of a stochastic SIS epidemic model with nonlinear incidence rate, Physica A, 526 (2019), 120946.
doi: 10.1016/j.physa.2019.04.182. |
[20] |
X. R. Mao, Stochastic Differential Equations and Applications, Second edition, Horwood Publishing Limited, Chichester, 2008.
doi: 10.1533/9780857099402. |
[21] |
D. H. Nguyen, N. H. Du and T. V. Ton,
Asymptotic behavior of predator-prey systems perturbed by white noise, Acta Appl. Math., 115 (2011), 351-370.
doi: 10.1007/s10440-011-9628-4. |
[22] |
D. H. Nguyen and G. Yin,
Coexistence and exclusion of stochastic competitive Lotka-Volterra models, J. Differential Equations, 262 (2017), 1192-1225.
doi: 10.1016/j.jde.2016.10.005. |
[23] |
H. H. Qiu, S. J. Guo and S. Z. Li, Stability and bifurcation in a predator-prey system with prey-taxis, Int. J. Bifur. Chaos, 30 (2020), 2050022, 25 pp.
doi: 10.1142/S0218127420500224. |
[24] |
J. H. Shao, Criteria for transience and recurrence of regime-switching diffusion processes, Electronic Journal of Probability, 20 (2015), 15 pp.
doi: 10.1214/EJP.v20-4018. |
[25] |
A. V. Skorokhod, Asymptotic Methods in the Theory of Stochastic Differential Equations, Mathematical Monographs, 78. American Mathematical Society, Providence, RI, 1989. |
[26] |
B. Sounvoravong, S. J. Guo and Y. Z. Bai, Bifurcation and stability of a diffusive SIRS epidemic model with time delay, Electronic Journal of Differential Equations, 2019 (2019), 16 pp. |
[27] |
Z. D. Teng and L. Wang,
Persistence and extinction for a class of stochastic SIS epidemic models with nonlinear incidence rate, Physic A, 451 (2016), 507-518.
doi: 10.1016/j.physa.2016.01.084. |
[28] |
B. Y. Wen, R. Rifhat and Z. D. Teng,
The stationary distribution in a stochastic SIS epidemic model with general nonlinear incidence, Physica A, 524 (2019), 258-271.
doi: 10.1016/j.physa.2019.04.049. |
[29] |
C. Xu,
Global threshold dynamics of a stochastic differential equation SIS model, J. Math. Anal. Appl., 447 (2017), 736-757.
doi: 10.1016/j.jmaa.2016.10.041. |
[30] |
Y. Zhang, Y. Li, Q. L. Zhang and A. H. Li,
Behavior of a stochastic SIR epidemic model with saturated incidence and vaccination rules, Physica A, 501 (2018), 178-187.
doi: 10.1016/j.physa.2018.02.191. |
[31] |
X. Y. Zhong, S. J. Guo and M. F. Peng,
Stability of stochastic SIRS epidemic models with saturated incidence rates and delay, Stochastic Analysis and Applications, 35 (2017), 1-26.
doi: 10.1080/07362994.2016.1244644. |
[32] |
Y. L. Zhou, W. G. Zhang and S. L. Yuan, Survival and stationary distribution in a stochastic SIS model, Discrete Dyn. Nat. Soc., 2013 (2013), Article ID 592821, 12 pp.
doi: 10.1155/2013/592821. |
[33] |
Y. L. Zhou, W. G. Zhang and S. L. Yuan,
Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Applied Mathematics and Computation, 244 (2014), 118-131.
doi: 10.1016/j.amc.2014.06.100. |
[34] |
C. J. Zhu,
Critical result on the threshold of a stochastic SIS model with saturated incidence rate, Physica A, 523 (2019), 426-437.
doi: 10.1016/j.physa.2019.02.012. |
[35] |
R. Zou and S. J. Guo, Dynamics of a diffusive Leslie-Gower predator-prey model in spatially heterogeneous environment, Discrete & Continuous Dynamical Systems-B, (2020).
doi: 10.3934/dcdsb.2020093. |
show all references
References:
[1] |
J. H. Bao and J. H. Shao,
Permanence and extinction of regime-switching predator-prey models, SIAM Journal on Mathematical Analysis, 48 (2016), 725-739.
doi: 10.1137/15M1024512. |
[2] |
S. Y. Cai, Y. M. Cai and X. R. Mao,
A stochastic differential equation SIS epidemic model with two independent Brownian motions, Journal of Mathematical Analysis and Applications, 474 (2019), 1536-1550.
doi: 10.1016/j.jmaa.2019.02.039. |
[3] |
Y. L. Chen, B. Y. Wen and Z. D. Teng,
The global dynamics for a stochastic SIS epidemic model with isolation, Physica A, 492 (2018), 1604-1624.
doi: 10.1016/j.physa.2017.11.085. |
[4] |
N. H. Du, N. T. Dieu and N. N. Nhu,
Conditions for permanence and ergodicity of certain SIR epidemic models, Acta Appl. Math., 160 (2019), 81-99.
doi: 10.1007/s10440-018-0196-8. |
[5] |
N. H. Du and N. N. Nhu,
Permanence and extinction of certain stochastic SIR models perturbed by a complex type of noises, Applied Mathematics Letters, 64 (2017), 223-230.
doi: 10.1016/j.aml.2016.09.012. |
[6] |
J. P. Gao and S. J. Guo, Patterns in a modified Leslie-Gower model with Beddington-DeAngelis functional response and nonlocal prey competition, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30 (2020), 2050074, 28 pp
doi: 10.1142/S0218127420500741. |
[7] |
A. Gray, D. Greenhalgh, L. Hu, X. Mao and J. Pan,
A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876-902.
doi: 10.1137/10081856X. |
[8] |
A. Gray, D. Greenhalgh, X. R. Mao and J. F. Pan,
The SIS epidemic model with Markovian switchiing, J. Math. Anal. Appl., 394 (2012), 496-516.
doi: 10.1016/j.jmaa.2012.05.029. |
[9] |
D. J. Higham,
An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546.
doi: 10.1137/S0036144500378302. |
[10] |
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam-New York, Kodansha, Ltd., Tokyo, 1981. |
[11] |
C. Y. Ji and D. Q. Jiang,
Threshold behaviour of a stochastic SIR model, Applied Mathematical Modelling, 38 (2014), 5067-5079.
doi: 10.1016/j.apm.2014.03.037. |
[12] |
R. Khasminskii, Stochastic Stability of Differential Equations, Stochastic Modelling and Applied Probability, 66. Springer, Heidelberg, 2012.
doi: 10.1007/978-3-642-23280-0. |
[13] |
A. Lahrouz, L. Omari and D. Kioach,
Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model, Nonlinear Anal. Model. Control, 16 (2011), 59-76.
doi: 10.15388/NA.16.1.14115. |
[14] |
A. Lahrouz, L. Omari, D. Kioach and A. Belmaâti,
Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination, Applied Mathematics and Computation, 218 (2012), 6519-6525.
doi: 10.1016/j.amc.2011.12.024. |
[15] |
G. J. Lan, Y. L. Huang, C. J. Wei and S. W. Zhang, A stochastic SIS epidemic model with saturating contact rate, Physica A, 529 (2019), 121504, 14 pp.
doi: 10.1016/j.physa.2019.121504. |
[16] |
S. Z. Li and S. J. Guo, Random attractors for stochastic semilinear degenerate parabolic equations with delay, Physica A, 550 (2020), 124164.
doi: 10.1016/j.physa.2020.124164. |
[17] |
X. Li, A. Gray, D. Jiang and X. Mao,
Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, Journal of Mathematical Analysis and Applications, 376 (1) (2011), 11-28.
doi: 10.1016/j.lmaa.2010.10.053. |
[18] |
Q. Liu and Q. M. Chen,
Dynamics of a stochastic SIR epidemic model with saturated incidence, Applied Mathematics and Computation, 282 (2016), 155-166.
doi: 10.1016/j.amc.2016.02.022. |
[19] |
Q. Liu, D. Q. Jiang, T. Hayat and A. Alsaedi, Threshold dynamics of a stochastic SIS epidemic model with nonlinear incidence rate, Physica A, 526 (2019), 120946.
doi: 10.1016/j.physa.2019.04.182. |
[20] |
X. R. Mao, Stochastic Differential Equations and Applications, Second edition, Horwood Publishing Limited, Chichester, 2008.
doi: 10.1533/9780857099402. |
[21] |
D. H. Nguyen, N. H. Du and T. V. Ton,
Asymptotic behavior of predator-prey systems perturbed by white noise, Acta Appl. Math., 115 (2011), 351-370.
doi: 10.1007/s10440-011-9628-4. |
[22] |
D. H. Nguyen and G. Yin,
Coexistence and exclusion of stochastic competitive Lotka-Volterra models, J. Differential Equations, 262 (2017), 1192-1225.
doi: 10.1016/j.jde.2016.10.005. |
[23] |
H. H. Qiu, S. J. Guo and S. Z. Li, Stability and bifurcation in a predator-prey system with prey-taxis, Int. J. Bifur. Chaos, 30 (2020), 2050022, 25 pp.
doi: 10.1142/S0218127420500224. |
[24] |
J. H. Shao, Criteria for transience and recurrence of regime-switching diffusion processes, Electronic Journal of Probability, 20 (2015), 15 pp.
doi: 10.1214/EJP.v20-4018. |
[25] |
A. V. Skorokhod, Asymptotic Methods in the Theory of Stochastic Differential Equations, Mathematical Monographs, 78. American Mathematical Society, Providence, RI, 1989. |
[26] |
B. Sounvoravong, S. J. Guo and Y. Z. Bai, Bifurcation and stability of a diffusive SIRS epidemic model with time delay, Electronic Journal of Differential Equations, 2019 (2019), 16 pp. |
[27] |
Z. D. Teng and L. Wang,
Persistence and extinction for a class of stochastic SIS epidemic models with nonlinear incidence rate, Physic A, 451 (2016), 507-518.
doi: 10.1016/j.physa.2016.01.084. |
[28] |
B. Y. Wen, R. Rifhat and Z. D. Teng,
The stationary distribution in a stochastic SIS epidemic model with general nonlinear incidence, Physica A, 524 (2019), 258-271.
doi: 10.1016/j.physa.2019.04.049. |
[29] |
C. Xu,
Global threshold dynamics of a stochastic differential equation SIS model, J. Math. Anal. Appl., 447 (2017), 736-757.
doi: 10.1016/j.jmaa.2016.10.041. |
[30] |
Y. Zhang, Y. Li, Q. L. Zhang and A. H. Li,
Behavior of a stochastic SIR epidemic model with saturated incidence and vaccination rules, Physica A, 501 (2018), 178-187.
doi: 10.1016/j.physa.2018.02.191. |
[31] |
X. Y. Zhong, S. J. Guo and M. F. Peng,
Stability of stochastic SIRS epidemic models with saturated incidence rates and delay, Stochastic Analysis and Applications, 35 (2017), 1-26.
doi: 10.1080/07362994.2016.1244644. |
[32] |
Y. L. Zhou, W. G. Zhang and S. L. Yuan, Survival and stationary distribution in a stochastic SIS model, Discrete Dyn. Nat. Soc., 2013 (2013), Article ID 592821, 12 pp.
doi: 10.1155/2013/592821. |
[33] |
Y. L. Zhou, W. G. Zhang and S. L. Yuan,
Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Applied Mathematics and Computation, 244 (2014), 118-131.
doi: 10.1016/j.amc.2014.06.100. |
[34] |
C. J. Zhu,
Critical result on the threshold of a stochastic SIS model with saturated incidence rate, Physica A, 523 (2019), 426-437.
doi: 10.1016/j.physa.2019.02.012. |
[35] |
R. Zou and S. J. Guo, Dynamics of a diffusive Leslie-Gower predator-prey model in spatially heterogeneous environment, Discrete & Continuous Dynamical Systems-B, (2020).
doi: 10.3934/dcdsb.2020093. |











[1] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[2] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[3] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[4] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[5] |
Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208 |
[6] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[7] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[8] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[9] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[10] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[11] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[12] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[13] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[14] |
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 |
[15] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[16] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[17] |
Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207 |
[18] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[19] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[20] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]