It is shown that locally asymptotically stable equilibria of planar cooperative or competitive maps have basin of attraction $ \mathcal{B} $ with relatively simple geometry: the boundary of each component of $ \mathcal{B} $ consists of the union of two unordered curves, and the components of $ \mathcal{B} $ are not comparable as sets. The boundary curves are Lipschitz if the map is of class $ C^1 $. Further, if a periodic point is in $ \partial \mathcal{B} $, then $ \partial\mathcal{B} $ is tangential to the line through the point with direction given by the eigenvector associated with the smaller characteristic value of the map at the point. Examples are given.
Citation: |
Figure 1.
(a) The basin of attraction
Figure 2.
(a) the basin
Figure 4.
Graphs of
Figure 6.
(a) Three components of the basin of attraction of the zero fixed point
[1] | A. Berger and A. Duh, Global saddle-type dynamics for convex second-order difference equations, J. Difference Equ. Appl., 23 (2017), 1807-1823. doi: 10.1080/10236198.2017.1367390. |
[2] | A. Brett and M. R. S. Kulenović, Basins of attraction of equilibrium points of monotone difference equations, Sarajevo J. Math., 5 (2009), 211-233. |
[3] | A. Cima, A. Gasull and V. Mañosa, Basin of attraction of triangular maps with applications, J. Difference Equ. Appl., 20 (2014), 423-437. doi: 10.1080/10236198.2013.852187. |
[4] | S. Elaydi, E. Kwessi and G. Livadiotis, Hierarchical competition models with the Allee effect III: Multispecies, J. Biol. Dyn., 12 (2018), 271-287. doi: 10.1080/17513758.2018.1439537. |
[5] | S. Elaydi, An Introduction to Difference Equations, Third edition, Undergraduate Texts in Mathematics, Springer, New York, 2005. |
[6] | M. Garić-Demirović, M. R. S. Kulenović and M. Nurkanović, Basins of attraction of certain homogeneous second order quadratic fractional difference equation, J. Concr. Appl. Math., 13 (2015), 35-50. |
[7] | J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1990. |
[8] | P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics Series, 247. Longman Scientific & Technical, Harlow, copublished in the United States with John Wiley & Sons, Inc., New York, 1991. |
[9] | M. W. Hirsch and H. Smith, Monotone dynamical systems, Handbook of Differential Equations: Ordinary Differential Equations, Elsevier B. V., Amsterdam, 2 (2005), 239-357. |
[10] | M. W. Hirsch and H. Smith, Monotone maps: A review, J. Difference Equ. Appl., 11 (2005), 379-398. doi: 10.1080/10236190412331335445. |
[11] | G. L. Karakostas, The dynamics of a cooperative difference system with coefficient a Metzler matrix, J. Difference Equ. Appl., 20 (2014), 685-693. doi: 10.1080/10236198.2013.799153. |
[12] | M. R. S. Kulenović and O. Merino, Global bifurcations for competitive systems in the plane, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 133-149. doi: 10.3934/dcdsb.2009.12.133. |
[13] | M. R. S. Kulenović and O. Merino, Invariant manifolds for planar competitive and cooperative maps, J. Difference Equ. Appl., 24 (2018), 898-915. doi: 10.1080/10236198.2018.1438418. |
[14] | M. R. S. Kulenović, O. Merino and M. Nurkanović, Global dynamics of certain competitive system in the plane, J. Difference Equ. Appl., 18 (2012), 1951-1966. doi: 10.1080/10236198.2011.605357. |
[15] | M. R. S. Kulenović, S. Moranjkić and Z. Nurkanović, Global dynamics and bifurcation of a perturbed sigmoid Beverton-Holt difference equation, Math. Methods Appl. Sci., 39 (2016), 2696-2715. doi: 10.1002/mma.3722. |
[16] | G. Livadiotis, L. Assas, S. Elaydi, E. Kwessi and D. Ribble, Competition models with the Allee effect, J. Difference Equ. Appl., 20 (2015), 1127-1151. doi: 10.1080/10236198.2014.897341. |
[17] | S. W. McDonald, C. Grebogi, E. Ott and J. A. Yorke, Fractal basin boundaries, Phys. D, 17 (1985), 125-153. doi: 10.1016/0167-2789(85)90001-6. |
[18] | J. W. Milnor, Attractor, Scholarpedia, 1 (2006), 1815. |
[19] | H. E. Nusse and J. A. Yorke, Basins of attraction, Science, 271 (1996), 1376-1380. doi: 10.1126/science.271.5254.1376. |
[20] | H. E. Nusse and J. A. Yorke, The structure of basins of attraction and their trapping regions, Ergodic Theory Dynam. Systems, 17 (1997), 463-481. doi: 10.1017/S0143385797069782. |
[21] | H. E. Nusse and J. A. Yorke, Characterizing the basins with the most entangled boundaries, Ergodic Theory Dynam. Systems, 23 (2003), 895-906. doi: 10.1017/S0143385702001360. |
[22] | H. E. Nusse and J. A. Yorke, Bifurcations of basins of attraction from the view point of prime ends, Topology Appl., 154 (2007), 2567-2579. doi: 10.1016/j.topol.2006.07.019. |
[23] | H. L. Smith, Planar competitive and cooperative difference equations, J. Difference Equ. Appl., 3 (1998), 335-357. doi: 10.1080/10236199708808108. |