• Previous Article
    A blow-up criterion of strong solutions to two-dimensional nonhomogeneous micropolar fluid equations with vacuum
  • DCDS-B Home
  • This Issue
  • Next Article
    Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations
doi: 10.3934/dcdsb.2020202

Properties of basins of attraction for planar discrete cooperative maps

Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881-0816, USA

* Corresponding author: M. R. S. Kulenović

Received  January 2020 Revised  March 2020 Published  June 2020

It is shown that locally asymptotically stable equilibria of planar cooperative or competitive maps have basin of attraction $ \mathcal{B} $ with relatively simple geometry: the boundary of each component of $ \mathcal{B} $ consists of the union of two unordered curves, and the components of $ \mathcal{B} $ are not comparable as sets. The boundary curves are Lipschitz if the map is of class $ C^1 $. Further, if a periodic point is in $ \partial \mathcal{B} $, then $ \partial\mathcal{B} $ is tangential to the line through the point with direction given by the eigenvector associated with the smaller characteristic value of the map at the point. Examples are given.

Citation: M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020202
References:
[1]

A. Berger and A. Duh, Global saddle-type dynamics for convex second-order difference equations, J. Difference Equ. Appl., 23 (2017), 1807-1823.  doi: 10.1080/10236198.2017.1367390.  Google Scholar

[2]

A. Brett and M. R. S. Kulenović, Basins of attraction of equilibrium points of monotone difference equations, Sarajevo J. Math., 5 (2009), 211-233.   Google Scholar

[3]

A. CimaA. Gasull and V. Mañosa, Basin of attraction of triangular maps with applications, J. Difference Equ. Appl., 20 (2014), 423-437.  doi: 10.1080/10236198.2013.852187.  Google Scholar

[4]

S. ElaydiE. Kwessi and G. Livadiotis, Hierarchical competition models with the Allee effect III: Multispecies, J. Biol. Dyn., 12 (2018), 271-287.  doi: 10.1080/17513758.2018.1439537.  Google Scholar

[5]

S. Elaydi, An Introduction to Difference Equations, Third edition, Undergraduate Texts in Mathematics, Springer, New York, 2005.  Google Scholar

[6]

M. Garić-DemirovićM. R. S. Kulenović and M. Nurkanović, Basins of attraction of certain homogeneous second order quadratic fractional difference equation, J. Concr. Appl. Math., 13 (2015), 35-50.   Google Scholar

[7]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1990.  Google Scholar

[8]

P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics Series, 247. Longman Scientific & Technical, Harlow, copublished in the United States with John Wiley & Sons, Inc., New York, 1991.  Google Scholar

[9]

M. W. Hirsch and H. Smith, Monotone dynamical systems, Handbook of Differential Equations: Ordinary Differential Equations, Elsevier B. V., Amsterdam, 2 (2005), 239-357.   Google Scholar

[10]

M. W. Hirsch and H. Smith, Monotone maps: A review, J. Difference Equ. Appl., 11 (2005), 379-398.  doi: 10.1080/10236190412331335445.  Google Scholar

[11]

G. L. Karakostas, The dynamics of a cooperative difference system with coefficient a Metzler matrix, J. Difference Equ. Appl., 20 (2014), 685-693.  doi: 10.1080/10236198.2013.799153.  Google Scholar

[12]

M. R. S. Kulenović and O. Merino, Global bifurcations for competitive systems in the plane, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 133-149.  doi: 10.3934/dcdsb.2009.12.133.  Google Scholar

[13]

M. R. S. Kulenović and O. Merino, Invariant manifolds for planar competitive and cooperative maps, J. Difference Equ. Appl., 24 (2018), 898-915.  doi: 10.1080/10236198.2018.1438418.  Google Scholar

[14]

M. R. S. KulenovićO. Merino and M. Nurkanović, Global dynamics of certain competitive system in the plane, J. Difference Equ. Appl., 18 (2012), 1951-1966.  doi: 10.1080/10236198.2011.605357.  Google Scholar

[15]

M. R. S. KulenovićS. Moranjkić and Z. Nurkanović, Global dynamics and bifurcation of a perturbed sigmoid Beverton-Holt difference equation, Math. Methods Appl. Sci., 39 (2016), 2696-2715.  doi: 10.1002/mma.3722.  Google Scholar

[16]

G. LivadiotisL. AssasS. ElaydiE. Kwessi and D. Ribble, Competition models with the Allee effect, J. Difference Equ. Appl., 20 (2015), 1127-1151.  doi: 10.1080/10236198.2014.897341.  Google Scholar

[17]

S. W. McDonaldC. GrebogiE. Ott and J. A. Yorke, Fractal basin boundaries, Phys. D, 17 (1985), 125-153.  doi: 10.1016/0167-2789(85)90001-6.  Google Scholar

[18]

J. W. Milnor, Attractor, Scholarpedia, 1 (2006), 1815. Google Scholar

[19]

H. E. Nusse and J. A. Yorke, Basins of attraction, Science, 271 (1996), 1376-1380.  doi: 10.1126/science.271.5254.1376.  Google Scholar

[20]

H. E. Nusse and J. A. Yorke, The structure of basins of attraction and their trapping regions, Ergodic Theory Dynam. Systems, 17 (1997), 463-481.  doi: 10.1017/S0143385797069782.  Google Scholar

[21]

H. E. Nusse and J. A. Yorke, Characterizing the basins with the most entangled boundaries, Ergodic Theory Dynam. Systems, 23 (2003), 895-906.  doi: 10.1017/S0143385702001360.  Google Scholar

[22]

H. E. Nusse and J. A. Yorke, Bifurcations of basins of attraction from the view point of prime ends, Topology Appl., 154 (2007), 2567-2579.  doi: 10.1016/j.topol.2006.07.019.  Google Scholar

[23]

H. L. Smith, Planar competitive and cooperative difference equations, J. Difference Equ. Appl., 3 (1998), 335-357.  doi: 10.1080/10236199708808108.  Google Scholar

show all references

References:
[1]

A. Berger and A. Duh, Global saddle-type dynamics for convex second-order difference equations, J. Difference Equ. Appl., 23 (2017), 1807-1823.  doi: 10.1080/10236198.2017.1367390.  Google Scholar

[2]

A. Brett and M. R. S. Kulenović, Basins of attraction of equilibrium points of monotone difference equations, Sarajevo J. Math., 5 (2009), 211-233.   Google Scholar

[3]

A. CimaA. Gasull and V. Mañosa, Basin of attraction of triangular maps with applications, J. Difference Equ. Appl., 20 (2014), 423-437.  doi: 10.1080/10236198.2013.852187.  Google Scholar

[4]

S. ElaydiE. Kwessi and G. Livadiotis, Hierarchical competition models with the Allee effect III: Multispecies, J. Biol. Dyn., 12 (2018), 271-287.  doi: 10.1080/17513758.2018.1439537.  Google Scholar

[5]

S. Elaydi, An Introduction to Difference Equations, Third edition, Undergraduate Texts in Mathematics, Springer, New York, 2005.  Google Scholar

[6]

M. Garić-DemirovićM. R. S. Kulenović and M. Nurkanović, Basins of attraction of certain homogeneous second order quadratic fractional difference equation, J. Concr. Appl. Math., 13 (2015), 35-50.   Google Scholar

[7]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1990.  Google Scholar

[8]

P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics Series, 247. Longman Scientific & Technical, Harlow, copublished in the United States with John Wiley & Sons, Inc., New York, 1991.  Google Scholar

[9]

M. W. Hirsch and H. Smith, Monotone dynamical systems, Handbook of Differential Equations: Ordinary Differential Equations, Elsevier B. V., Amsterdam, 2 (2005), 239-357.   Google Scholar

[10]

M. W. Hirsch and H. Smith, Monotone maps: A review, J. Difference Equ. Appl., 11 (2005), 379-398.  doi: 10.1080/10236190412331335445.  Google Scholar

[11]

G. L. Karakostas, The dynamics of a cooperative difference system with coefficient a Metzler matrix, J. Difference Equ. Appl., 20 (2014), 685-693.  doi: 10.1080/10236198.2013.799153.  Google Scholar

[12]

M. R. S. Kulenović and O. Merino, Global bifurcations for competitive systems in the plane, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 133-149.  doi: 10.3934/dcdsb.2009.12.133.  Google Scholar

[13]

M. R. S. Kulenović and O. Merino, Invariant manifolds for planar competitive and cooperative maps, J. Difference Equ. Appl., 24 (2018), 898-915.  doi: 10.1080/10236198.2018.1438418.  Google Scholar

[14]

M. R. S. KulenovićO. Merino and M. Nurkanović, Global dynamics of certain competitive system in the plane, J. Difference Equ. Appl., 18 (2012), 1951-1966.  doi: 10.1080/10236198.2011.605357.  Google Scholar

[15]

M. R. S. KulenovićS. Moranjkić and Z. Nurkanović, Global dynamics and bifurcation of a perturbed sigmoid Beverton-Holt difference equation, Math. Methods Appl. Sci., 39 (2016), 2696-2715.  doi: 10.1002/mma.3722.  Google Scholar

[16]

G. LivadiotisL. AssasS. ElaydiE. Kwessi and D. Ribble, Competition models with the Allee effect, J. Difference Equ. Appl., 20 (2015), 1127-1151.  doi: 10.1080/10236198.2014.897341.  Google Scholar

[17]

S. W. McDonaldC. GrebogiE. Ott and J. A. Yorke, Fractal basin boundaries, Phys. D, 17 (1985), 125-153.  doi: 10.1016/0167-2789(85)90001-6.  Google Scholar

[18]

J. W. Milnor, Attractor, Scholarpedia, 1 (2006), 1815. Google Scholar

[19]

H. E. Nusse and J. A. Yorke, Basins of attraction, Science, 271 (1996), 1376-1380.  doi: 10.1126/science.271.5254.1376.  Google Scholar

[20]

H. E. Nusse and J. A. Yorke, The structure of basins of attraction and their trapping regions, Ergodic Theory Dynam. Systems, 17 (1997), 463-481.  doi: 10.1017/S0143385797069782.  Google Scholar

[21]

H. E. Nusse and J. A. Yorke, Characterizing the basins with the most entangled boundaries, Ergodic Theory Dynam. Systems, 23 (2003), 895-906.  doi: 10.1017/S0143385702001360.  Google Scholar

[22]

H. E. Nusse and J. A. Yorke, Bifurcations of basins of attraction from the view point of prime ends, Topology Appl., 154 (2007), 2567-2579.  doi: 10.1016/j.topol.2006.07.019.  Google Scholar

[23]

H. L. Smith, Planar competitive and cooperative difference equations, J. Difference Equ. Appl., 3 (1998), 335-357.  doi: 10.1080/10236199708808108.  Google Scholar

Figure 1.  (a) The basin of attraction $ \mathcal{B} $ of the zero fixed point $ \mathrm o $ of the map $ T(x, y) = (y, x^3+y^3) $. Note that $ \mathcal{B} $ is unbounded, and $ \partial \mathcal{B} $ contains two fixed points $ \mathrm{p}_1 $ and $ \mathrm{p}_2 $ which are saddle points. The union of the stable manifolds of $ \mathrm{p}_1 $ and $ \mathrm{p}_2 $ gives $ \partial \mathcal{B} $. (b) The basin of attraction $ \mathcal{B} $ of the zero fixed point of the map $ T(x, y) = (y^3, x^3+y^3) $. The set $ \mathcal{B} $ is bounded, and $ \partial \mathcal{B} $ contains two fixed points $ \mathrm{p}_1 $ and $ \mathrm{p}_2 $ (saddles) and a repelling minimal period-two point $ {\mathrm q}_1 $ and $ {\mathrm q}_2 $. The union of the stable manifolds of $ \mathrm{p}_1 $ and $ \mathrm{p}_2 $ gives $ \partial \mathcal{B} $
Figure 2.  (a) the basin $ \mathcal{B} $ of the fixed point $ \bar{\mathrm{x}} $ has three components $ \mathcal{B}^\prime $, $ \mathcal{B}_* $, $ \mathcal{B}^{\prime\prime} $ whose closure is in $ \mbox{int}(\mathcal{R}) $ and such that $ \mathcal{B}^\prime <\!\!<_{se}\mathcal{B}_* <\!\!<_{se}\mathcal{B}^{\prime\prime} $. Each component has boundary curves $ \mathcal{C}_+ $ and $ \mathcal{C}_- $. (b) The set $ \mathcal{B} $ has only one component, which has part of its boundary in $ \partial \mathcal{R} $. Also, $ \bar{\mathrm{x}} \in \partial \mathcal{R} $. The point $ \mathrm{p} $ is an endpoint of both boundary curves $ \mathcal{C}_- $ and $ \mathcal{C}_+ $. The point $ \mathrm{p} $ is a fixed point of $ T $.
Figure 3.  Basin of attraction of the origin $ \mathrm{o} $ for the map $ U $ in (8)]Basin of attraction of the origin $ \mathrm{o} $ for the map $ U $ in (8). The points $ \mathrm{p} $ and $ \mathrm{q} $ are saddle fixed points.
Figure 4.  Graphs of $ \phi $ from (12) and the identity function on the nonnegative semi axis.]Graphs of $ \phi $ from (12) and the identity function on the nonnegative semi axis. $ \phi $ has locally asymptotically stable fixed points $ 0 $, $ b = 2.06 $, and a repelling fixed point $ a = 0.95 $. The real numbers $ c = 6.03 $ and $ d = 12.80 $ are pre-images of $ a $. The basin of attraction of $ 0 $ on the semi-axis consists of the intervals $ 0\leq t < a $ and $ c< t < d $. All decimal numbers have been rounded to two decimals
Figure 5.  The partial derivatives of $ V(x, y) $
Figure 6.  (a) Three components of the basin of attraction of the zero fixed point $ \mathrm o $ of the map $ V(x, y) $ in Example 1. Here $ \mathrm r $, $ \mathrm s $ are saddle fixed points, $ {\mathrm p}_1 $ and $ {\mathrm q}_1 $ are a saddle period-two point, $ {\mathrm p}_2 $ and $ {\mathrm q}_2 $ are repelling fixed points, and $ {\mathrm p}_3 $, $ {\mathrm p}_4 $, $ {\mathrm q}_3 $, $ {\mathrm q}_4 $ are eventual period-two points. The boundary of the invariant part of the basin of attraction consist of stable manifolds of saddle fixed points with a period-two endpoints. In addition, there are two eventually period-two points which are end points of another piece of the basin of attraction which is mapped into the invariant part. (b) The invariant component of the basin of attraction of the origin $ \mathrm o $.
Figure 7.  Global dynamics for map (13) as given in Proposition 1. Here $ \alpha = 0.4 $ and $ \delta = 0.7 $
Figure 8.  The four cases in the definition of $ \mathcal{C}_\pm $
[1]

E. Camouzis, H. Kollias, I. Leventides. Stable manifold market sequences. Journal of Dynamics & Games, 2018, 5 (2) : 165-185. doi: 10.3934/jdg.2018010

[2]

George Osipenko. Linearization near a locally nonunique invariant manifold. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 189-205. doi: 10.3934/dcds.1997.3.189

[3]

A. Carati. Center manifold of unstable periodic orbits of helium atom: numerical evidence. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 97-104. doi: 10.3934/dcdsb.2003.3.97

[4]

Tibor Krisztin. A local unstable manifold for differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 993-1028. doi: 10.3934/dcds.2003.9.993

[5]

Alexander M. Krasnosel'skii, Edward O'Grady, Alexei Pokrovskii, Dmitrii I. Rachinskii. Periodic canard trajectories with multiple segments following the unstable part of critical manifold. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 467-482. doi: 10.3934/dcdsb.2013.18.467

[6]

Giovanna Citti, Maria Manfredini, Alessandro Sarti. Finite difference approximation of the Mumford and Shah functional in a contact manifold of the Heisenberg space. Communications on Pure & Applied Analysis, 2010, 9 (4) : 905-927. doi: 10.3934/cpaa.2010.9.905

[7]

Bernold Fiedler, Carlos Rocha. Nonlinear Sturm global attractors: Unstable manifold decompositions as regular CW-complexes. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5099-5122. doi: 10.3934/dcds.2014.34.5099

[8]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[9]

Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223

[10]

César Augusto Bortot, Wellington José Corrêa, Ryuichi Fukuoka, Thales Maier Souza. Exponential stability for the locally damped defocusing Schrödinger equation on compact manifold. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1367-1386. doi: 10.3934/cpaa.2020067

[11]

Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249

[12]

Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557

[13]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020166

[14]

Arne Ogrowsky, Björn Schmalfuss. Unstable invariant manifolds for a nonautonomous differential equation with nonautonomous unbounded delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1663-1681. doi: 10.3934/dcdsb.2013.18.1663

[15]

Franz W. Kamber and Peter W. Michor. The flow completion of a manifold with vector field. Electronic Research Announcements, 2000, 6: 95-97.

[16]

Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure & Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839

[17]

Hongyu Cheng, Rafael de la Llave. Time dependent center manifold in PDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020213

[18]

Antonios Zagaris, Christophe Vandekerckhove, C. William Gear, Tasso J. Kaper, Ioannis G. Kevrekidis. Stability and stabilization of the constrained runs schemes for equation-free projection to a slow manifold. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2759-2803. doi: 10.3934/dcds.2012.32.2759

[19]

Peter Giesl, Holger Wendland. Approximating the basin of attraction of time-periodic ODEs by meshless collocation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1249-1274. doi: 10.3934/dcds.2009.25.1249

[20]

Peter Giesl, James McMichen. Determination of the basin of attraction of a periodic orbit in two dimensions using meshless collocation. Journal of Computational Dynamics, 2016, 3 (2) : 191-210. doi: 10.3934/jcd.2016010

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]