    ## Solving a system of linear differential equations with interval coefficients

 Department of Computer Engineering, Baskent University, 06790, Turkey

* Corresponding author: Nizami A. Gasilov, gasilov@baskent.edu.tr

Received  February 2020 Revised  April 2020 Published  June 2020

In this study, we consider a system of homogeneous linear differential equations, the coefficients and initial values of which are constant intervals. We apply the approach that treats an interval problem as a set of real (classical) problems. In previous studies, a system of linear differential equations with real coefficients, but with interval forcing terms and interval initial values was investigated. It was shown that the value of the solution at each time instant forms a convex polygon in the coordinate plane. The motivating question of the present study is to investigate whether the same statement remains true, when the coefficients are intervals. Numerical experiments show that the answer is negative. Namely, at a fixed time, the region formed by the solution's value is not necessarily a polygon. Moreover, this region can be non-convex.

The solution, defined in this study, is compared with the Hukuhara- differentiable solution, and its advantages are exhibited. First, under the proposed concept, the solution always exists and is unique. Second, this solution concept does not require a set-valued, or interval-valued derivative. Third, the concept is successful because it seeks a solution from a wider class of set-valued functions.

Citation: Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020203
##### References:
  Ş. E. Amrahov, A. Khastan, N. Gasilov and A. G. Fatullayev, Relationship between Bede-Gal differentiable set-valued functions and their associated support functions, Fuzzy Sets and Systems, 295 (2016), 57-71.  doi: 10.1016/j.fss.2015.12.002.  Google Scholar  J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2. Birkhäuser Boston, Inc., Boston, MA, 1990. Google Scholar  Y. Chalco-Cano, A. Rufián-Lizana, H. Román-Flores and M. D. Jiménez-Gamero, Calculus for interval-valued functions using generalized Hukuhara derivative and applications, Fuzzy Sets and Systems, 219 (2013), 49-67.  doi: 10.1016/j.fss.2012.12.004.  Google Scholar  T. F. Filippova, Differential equations for ellipsoidal estimates of reachable sets for a class of control systems with nonlinearity and uncertainty, IFAC PapersOnLine, 51 (2018), 770-775, http:dx.doi.org/10.1016/j.ifacol.2018.11.452. Google Scholar  N. A. Gasilov and Ş. E. Amrahov, On differential equations with interval coefficients, Mathematical Methods in the Applied Sciences, 43 (2020), 1825-1837.  doi: 10.1002/mma.6006. Google Scholar  N. A. Gasilov and Ş. E. Amrahov, Solving a nonhomogeneous linear system of interval differential equations, Soft Computing, 22 (2018), 3817-3828.  doi: 10.1007/s00500-017-2818-x. Google Scholar  N. A. Gasilov and M. Kaya, A method for the numerical solution of a boundary value problem for a linear differential equation with interval parameters, International Journal of Computational Methods, 16 (2019), 1850115, 17 pp. doi: 10.1142/S0219876218501153.  Google Scholar  E. Hüllermeier, An approach to modeling and simulation of uncertain dynamical systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5 (1997), 117-137.  doi: 10.1142/S0218488597000117.  Google Scholar  R. B. Kearfott and V. Kreinovich, Applications of interval computations: An introduction, Applications of Interval Computations, Appl. Optim., Kluwer Acad. Publ., Dordrecht, 3 (1996), 1-22.  doi: 10.1007/978-1-4613-3440-8_1.  Google Scholar  V. Lakshmikantham, T. G. Bhaskar and J. V. Devi, Theory of Set Differential Equations in Metric Spaces, Cambridge Scientific Publishers, Cambridge, 2006. Google Scholar  M. T. Malinowski, Interval differential equations with a second type Hukuhara derivative, Applied Mathematics Letters, 24 (2011), 2118-2123.  doi: 10.1016/j.aml.2011.06.011.  Google Scholar  R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009. doi: 10.1137/1.9780898717716.  Google Scholar  A. V. Plotnikov and T. A. Komleva, On some properties of bundles of trajectories of a controlled bilinear inclusion, Ukrainian Mathematical Journal, 56 (2004), 586-600.  doi: 10.1007/s11253-005-0114-x.  Google Scholar  A. V. Plotnikov and N. V. Skripnik, Conditions for the existence of local solutions of set-valued differential equations with generalized derivative, Ukrainian Mathematical Journal, 65 (2014), 1498-1513.  doi: 10.1007/s11253-014-0875-1.  Google Scholar  L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal., 71 (2009), 1311-1328.  doi: 10.1016/j.na.2008.12.005.  Google Scholar

show all references

##### References:
  Ş. E. Amrahov, A. Khastan, N. Gasilov and A. G. Fatullayev, Relationship between Bede-Gal differentiable set-valued functions and their associated support functions, Fuzzy Sets and Systems, 295 (2016), 57-71.  doi: 10.1016/j.fss.2015.12.002.  Google Scholar  J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2. Birkhäuser Boston, Inc., Boston, MA, 1990. Google Scholar  Y. Chalco-Cano, A. Rufián-Lizana, H. Román-Flores and M. D. Jiménez-Gamero, Calculus for interval-valued functions using generalized Hukuhara derivative and applications, Fuzzy Sets and Systems, 219 (2013), 49-67.  doi: 10.1016/j.fss.2012.12.004.  Google Scholar  T. F. Filippova, Differential equations for ellipsoidal estimates of reachable sets for a class of control systems with nonlinearity and uncertainty, IFAC PapersOnLine, 51 (2018), 770-775, http:dx.doi.org/10.1016/j.ifacol.2018.11.452. Google Scholar  N. A. Gasilov and Ş. E. Amrahov, On differential equations with interval coefficients, Mathematical Methods in the Applied Sciences, 43 (2020), 1825-1837.  doi: 10.1002/mma.6006. Google Scholar  N. A. Gasilov and Ş. E. Amrahov, Solving a nonhomogeneous linear system of interval differential equations, Soft Computing, 22 (2018), 3817-3828.  doi: 10.1007/s00500-017-2818-x. Google Scholar  N. A. Gasilov and M. Kaya, A method for the numerical solution of a boundary value problem for a linear differential equation with interval parameters, International Journal of Computational Methods, 16 (2019), 1850115, 17 pp. doi: 10.1142/S0219876218501153.  Google Scholar  E. Hüllermeier, An approach to modeling and simulation of uncertain dynamical systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5 (1997), 117-137.  doi: 10.1142/S0218488597000117.  Google Scholar  R. B. Kearfott and V. Kreinovich, Applications of interval computations: An introduction, Applications of Interval Computations, Appl. Optim., Kluwer Acad. Publ., Dordrecht, 3 (1996), 1-22.  doi: 10.1007/978-1-4613-3440-8_1.  Google Scholar  V. Lakshmikantham, T. G. Bhaskar and J. V. Devi, Theory of Set Differential Equations in Metric Spaces, Cambridge Scientific Publishers, Cambridge, 2006. Google Scholar  M. T. Malinowski, Interval differential equations with a second type Hukuhara derivative, Applied Mathematics Letters, 24 (2011), 2118-2123.  doi: 10.1016/j.aml.2011.06.011.  Google Scholar  R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009. doi: 10.1137/1.9780898717716.  Google Scholar  A. V. Plotnikov and T. A. Komleva, On some properties of bundles of trajectories of a controlled bilinear inclusion, Ukrainian Mathematical Journal, 56 (2004), 586-600.  doi: 10.1007/s11253-005-0114-x.  Google Scholar  A. V. Plotnikov and N. V. Skripnik, Conditions for the existence of local solutions of set-valued differential equations with generalized derivative, Ukrainian Mathematical Journal, 65 (2014), 1498-1513.  doi: 10.1007/s11253-014-0875-1.  Google Scholar  L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal., 71 (2009), 1311-1328.  doi: 10.1016/j.na.2008.12.005.  Google Scholar The values of numerical solution of Example 1 at different time instants: $t = 0$ (upper left quarter), $t = 0.2$ (upper right quarter), $t = 0.4$ (lower left quarter), and $t = 0.6$ (lower right quarter) Solutions of Example 2, obtained by two methods, at $t = 0$ (upper left quarter), $t = 0.2$ (upper right quarter), $t = 0.4$ (lower left quarter), and $t = 0.6$ (lower right quarter). The continuous lines represent the numerical solution, obtained by the proposed method, while the dashed lines represent the Hukuhara-differentiable solution The Hukuhara-differentiable solution $X(t) = \left[ \underline{x}(t),\ \overline{x}(t)\right]$ and $Y(t) = \left[ \underline{y}(t),\ \overline{y}(t)\right]$ for Example 2. At the left half, the lower and upper lines represent $\underline{x}(t)$ and $\overline{x}(t)$, respectively. The lines at the right half represent $\underline{y}(t)$ and $\overline{y}(t)$
  Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317  Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $q$-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440  Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468  Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264  Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050  Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047  Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016  Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319  Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136  Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345  Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384  Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348  Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273  Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056  Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079  Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081  Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364  Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454  Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448  Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

2019 Impact Factor: 1.27

## Tools

Article outline

Figures and Tables