doi: 10.3934/dcdsb.2020204

Collective behaviors of a Winfree ensemble on an infinite cylinder

1. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826 and, Korea Institute for Advanced Study, Hoegiro 85, Seoul 02455, Korea (Republic of)

2. 

Department of Mathematical Sciences, Seoul National University, Seoul 08826, Korea (Republic of)

3. 

Research Institute of Mathematics, Seoul National University, Seoul 08826, Korea (Republic of)

* Corresponding author: Bora Moon

Received  February 2020 Revised  April 2020 Published  June 2020

Fund Project: The work of S.-Y. Ha is supported by the NRF grant (2017R1A2B2001864) and the work of B. Moon was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2019R1I1A1A01059585)

The Winfree model is the first phase model for synchronization and it exhibits diverse asymptotic patterns that cannot be observed in the Kuramoto model. In this paper, we propose a Winfree type model describing the aggregation of particles on the surface of an infinite cylinder. For a special case, our proposed model is in fact equivalent to the complex Winfree model. For the proposed model, we present a sufficient framework leading to the complete oscillator death and uniform $ \ell_p $-stability in a large coupling regime. We also derive the corresponding kinetic model via uniform-in-time mean-field limit. In addition, we also provide several numerical simulations for the particle and compare them with analytical results.

Citation: Seung-Yeal Ha, Myeongju Kang, Bora Moon. Collective behaviors of a Winfree ensemble on an infinite cylinder. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020204
References:
[1]

J. A. AcebronL. L. BonillaC. J. P. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.   Google Scholar

[2]

G. AlbiN. BellomoL. FermoS.-Y. HaJ. KimL. PareschiD. Poyato and J. Soler, Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci., 29 (2019), 1901-2005.  doi: 10.1142/S0218202519500374.  Google Scholar

[3]

J. T. Ariaratnam and S. H. Strogatz, Phase diagram for the Winfree model of coupled nonlinear oscillators, Phys. Rev. Lett., 86 (2001), 4278-4281.   Google Scholar

[4]

M. BalleriniN. CabibboR. CandelierA. CavagnaE. CisbaniI. GiardinaV. LecomteA. OrlandiG. ParisiA. ProcacciniM. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. USA, 105 (2008), 1232-1237.   Google Scholar

[5]

J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562. Google Scholar

[6]

Y.-P. ChoiS.-Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754.  doi: 10.1016/j.physd.2011.11.011.  Google Scholar

[7]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automatic Control, 54 (2009), 353-357.  doi: 10.1109/TAC.2008.2007884.  Google Scholar

[8]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[9]

P. Degond and S. Motsch, Large scale dynamics of the persistent turning walker model of fish behavior, J. Stat. Phys., 131 (2008), 989-1021.  doi: 10.1007/s10955-008-9529-8.  Google Scholar

[10]

F. Dörfler and F. Bullo, Synchronization in complex network of phase oscillators: A survey, Automatica J. IFAC, 50 (2014), 1539-1564.  doi: 10.1016/j.automatica.2014.04.012.  Google Scholar

[11]

F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM. J. Appl. Dyn. Syst., 10 (2011), 1070-1099.  doi: 10.1137/10081530X.  Google Scholar

[12]

F. Giannuzzi, D. Marinazzo, G. Nardulli, M. Pellicoro and S. Stramaglia, Phase diagram of a generalized Winfree model, Physical Review E, 75 (2007), 051104. Google Scholar

[13]

S.-Y. Ha, M.-J. Kang, C. Lattanzio and B. Rubino, A class of interacting particle systems on the infinite cylinder with flocking phenomena, Math. Models Methods Appl. Sci., 22 (2012), 1250008, 25 pp. doi: 10.1142/S021820251250008X.  Google Scholar

[14]

S.-Y. Ha, M. Kang and B. Moon, On the emerging asymptotic patterns for the Winfree model with frustrations, submitted. Google Scholar

[15]

S.-Y. Ha and D. Kim, Robustness and asymptotic stability for the Winfree model on a general network under the effect of time-delay, J. Math. Phys., 59 (2018), 112702, 20 pp. doi: 10.1063/1.5017063.  Google Scholar

[16]

S.-Y. Ha, D. Kim and B. Moon, Interplay of random inputs and adaptive couplings in the Winfree model, submitted. Google Scholar

[17]

S.-Y. HaJ. Kim and X. T. Zhang, Uniform stability of the Cucker-Smale model and its application to the mean-field limit, Kinet. Relat. Models, 11 (2018), 1157-1181.  doi: 10.3934/krm.2018045.  Google Scholar

[18]

S.-Y. HaD. KoJ. Park and S. W. Ryoo, Emergence of partial locking states from the ensemble of Winfree oscillators, Quart. Appl. Math., 75 (2017), 39-68.  doi: 10.1090/qam/1448.  Google Scholar

[19]

S.-Y. HaD. KoJ. Park and S. W. Ryoo, Emergent dynamics of Winfree oscillators on locally coupled networks, J. Differential Equations, 260 (2016), 4203-4236.  doi: 10.1016/j.jde.2015.11.008.  Google Scholar

[20]

S.-Y. HaD. KoJ. Park and X. T. Zhang, Collective synchronization of classical and quantum oscillators, EMS Surv. Math. Sci., 3 (2016), 209-267.  doi: 10.4171/EMSS/17.  Google Scholar

[21]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[22]

S.-Y. HaJ. Park and S. W. Ryoo, Emergence of phase-locked states for the Winfree model in a large coupling regime, Discrete Contin. Dyn. Syst., 35 (2015), 3417-3436.  doi: 10.3934/dcds.2015.35.3417.  Google Scholar

[23]

S.-Y. HaJ. Park and X. T. Zhang, A global well-posedness and asymptotic dynamics of the kinetic Winfree equation, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 1317-1344.   Google Scholar

[24]

Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture Notes in Theoretical Physics, 30 (1975), 420. Google Scholar

[25]

C. Lancellotti, On the Vlasov limit for systems of nonlinearly coupled oscillators without noise, Transport Theory Statist. Phys., 34 (2005), 523-535.  doi: 10.1080/00411450508951152.  Google Scholar

[26]

P. V. Mieghem, A complex variant of the Kuramoto model, preprint, (2009), available at: https://www.nas.ewi.tudelft.nl/people/Piet/papers. Google Scholar

[27]

H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, Kinetic Theories and the Boltzmann Equation, Lecture Notes in Math., Springer, Berlin, 1048 (1984), 60-110.  doi: 10.1007/BFb0071878.  Google Scholar

[28]

W. OukilA. Kessi and Ph. Thieullen, Synchronization hypothesis in the Winfree model, Dyn. Syst., 32 (2017), 326-339.  doi: 10.1080/14689367.2016.1227303.  Google Scholar

[29]

W. OukilPh. Thieullen and A. Kessi, Invariant cone and synchronization state stability of the mean field models, Dyn. Syst., 34 (2019), 422-433.  doi: 10.1080/14689367.2018.1547683.  Google Scholar

[30]

D. A. PaleyN. E. LeonardR. SepulchreD. Grunbaum and J. K. Parrish, Oscillator models and collective motion, IEEE Control Systems, 27 (2007), 89-105.   Google Scholar

[31]

D. D. Quinn, R. H. Rand and S. Strogatz, Singular unlocking transition in the Winfree model of coupled oscillators, Physical Review E, 75 (2007), 036218, 10 pp. doi: 10.1103/PhysRevE.75.036218.  Google Scholar

[32]

D. D. Quinn, R. H. Rand and S.Strogatz, Synchronization in the Winfree model of coupled nonlinear interactions, A. ENOC 2005 Conference, Eindhoven, Netherlands (CD-ROM), (2005). Google Scholar

[33]

J. Toner and Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking, Phys. Rev. E, 58 (1998), 4828-4858.  doi: 10.1103/PhysRevE.58.4828.  Google Scholar

[34]

C. Villani, Optimal Transport: Old and New, Grundlehren der Mathematischen Wissenschaften, 338. Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.  Google Scholar

[35]

A. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theoret. Biol., 16 (1967), 15-42.   Google Scholar

show all references

References:
[1]

J. A. AcebronL. L. BonillaC. J. P. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.   Google Scholar

[2]

G. AlbiN. BellomoL. FermoS.-Y. HaJ. KimL. PareschiD. Poyato and J. Soler, Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci., 29 (2019), 1901-2005.  doi: 10.1142/S0218202519500374.  Google Scholar

[3]

J. T. Ariaratnam and S. H. Strogatz, Phase diagram for the Winfree model of coupled nonlinear oscillators, Phys. Rev. Lett., 86 (2001), 4278-4281.   Google Scholar

[4]

M. BalleriniN. CabibboR. CandelierA. CavagnaE. CisbaniI. GiardinaV. LecomteA. OrlandiG. ParisiA. ProcacciniM. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. USA, 105 (2008), 1232-1237.   Google Scholar

[5]

J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562. Google Scholar

[6]

Y.-P. ChoiS.-Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754.  doi: 10.1016/j.physd.2011.11.011.  Google Scholar

[7]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automatic Control, 54 (2009), 353-357.  doi: 10.1109/TAC.2008.2007884.  Google Scholar

[8]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[9]

P. Degond and S. Motsch, Large scale dynamics of the persistent turning walker model of fish behavior, J. Stat. Phys., 131 (2008), 989-1021.  doi: 10.1007/s10955-008-9529-8.  Google Scholar

[10]

F. Dörfler and F. Bullo, Synchronization in complex network of phase oscillators: A survey, Automatica J. IFAC, 50 (2014), 1539-1564.  doi: 10.1016/j.automatica.2014.04.012.  Google Scholar

[11]

F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM. J. Appl. Dyn. Syst., 10 (2011), 1070-1099.  doi: 10.1137/10081530X.  Google Scholar

[12]

F. Giannuzzi, D. Marinazzo, G. Nardulli, M. Pellicoro and S. Stramaglia, Phase diagram of a generalized Winfree model, Physical Review E, 75 (2007), 051104. Google Scholar

[13]

S.-Y. Ha, M.-J. Kang, C. Lattanzio and B. Rubino, A class of interacting particle systems on the infinite cylinder with flocking phenomena, Math. Models Methods Appl. Sci., 22 (2012), 1250008, 25 pp. doi: 10.1142/S021820251250008X.  Google Scholar

[14]

S.-Y. Ha, M. Kang and B. Moon, On the emerging asymptotic patterns for the Winfree model with frustrations, submitted. Google Scholar

[15]

S.-Y. Ha and D. Kim, Robustness and asymptotic stability for the Winfree model on a general network under the effect of time-delay, J. Math. Phys., 59 (2018), 112702, 20 pp. doi: 10.1063/1.5017063.  Google Scholar

[16]

S.-Y. Ha, D. Kim and B. Moon, Interplay of random inputs and adaptive couplings in the Winfree model, submitted. Google Scholar

[17]

S.-Y. HaJ. Kim and X. T. Zhang, Uniform stability of the Cucker-Smale model and its application to the mean-field limit, Kinet. Relat. Models, 11 (2018), 1157-1181.  doi: 10.3934/krm.2018045.  Google Scholar

[18]

S.-Y. HaD. KoJ. Park and S. W. Ryoo, Emergence of partial locking states from the ensemble of Winfree oscillators, Quart. Appl. Math., 75 (2017), 39-68.  doi: 10.1090/qam/1448.  Google Scholar

[19]

S.-Y. HaD. KoJ. Park and S. W. Ryoo, Emergent dynamics of Winfree oscillators on locally coupled networks, J. Differential Equations, 260 (2016), 4203-4236.  doi: 10.1016/j.jde.2015.11.008.  Google Scholar

[20]

S.-Y. HaD. KoJ. Park and X. T. Zhang, Collective synchronization of classical and quantum oscillators, EMS Surv. Math. Sci., 3 (2016), 209-267.  doi: 10.4171/EMSS/17.  Google Scholar

[21]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[22]

S.-Y. HaJ. Park and S. W. Ryoo, Emergence of phase-locked states for the Winfree model in a large coupling regime, Discrete Contin. Dyn. Syst., 35 (2015), 3417-3436.  doi: 10.3934/dcds.2015.35.3417.  Google Scholar

[23]

S.-Y. HaJ. Park and X. T. Zhang, A global well-posedness and asymptotic dynamics of the kinetic Winfree equation, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 1317-1344.   Google Scholar

[24]

Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture Notes in Theoretical Physics, 30 (1975), 420. Google Scholar

[25]

C. Lancellotti, On the Vlasov limit for systems of nonlinearly coupled oscillators without noise, Transport Theory Statist. Phys., 34 (2005), 523-535.  doi: 10.1080/00411450508951152.  Google Scholar

[26]

P. V. Mieghem, A complex variant of the Kuramoto model, preprint, (2009), available at: https://www.nas.ewi.tudelft.nl/people/Piet/papers. Google Scholar

[27]

H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, Kinetic Theories and the Boltzmann Equation, Lecture Notes in Math., Springer, Berlin, 1048 (1984), 60-110.  doi: 10.1007/BFb0071878.  Google Scholar

[28]

W. OukilA. Kessi and Ph. Thieullen, Synchronization hypothesis in the Winfree model, Dyn. Syst., 32 (2017), 326-339.  doi: 10.1080/14689367.2016.1227303.  Google Scholar

[29]

W. OukilPh. Thieullen and A. Kessi, Invariant cone and synchronization state stability of the mean field models, Dyn. Syst., 34 (2019), 422-433.  doi: 10.1080/14689367.2018.1547683.  Google Scholar

[30]

D. A. PaleyN. E. LeonardR. SepulchreD. Grunbaum and J. K. Parrish, Oscillator models and collective motion, IEEE Control Systems, 27 (2007), 89-105.   Google Scholar

[31]

D. D. Quinn, R. H. Rand and S. Strogatz, Singular unlocking transition in the Winfree model of coupled oscillators, Physical Review E, 75 (2007), 036218, 10 pp. doi: 10.1103/PhysRevE.75.036218.  Google Scholar

[32]

D. D. Quinn, R. H. Rand and S.Strogatz, Synchronization in the Winfree model of coupled nonlinear interactions, A. ENOC 2005 Conference, Eindhoven, Netherlands (CD-ROM), (2005). Google Scholar

[33]

J. Toner and Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking, Phys. Rev. E, 58 (1998), 4828-4858.  doi: 10.1103/PhysRevE.58.4828.  Google Scholar

[34]

C. Villani, Optimal Transport: Old and New, Grundlehren der Mathematischen Wissenschaften, 338. Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.  Google Scholar

[35]

A. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theoret. Biol., 16 (1967), 15-42.   Google Scholar

Figure 1.  Time evolution of $ \frac{X(t)}{t} $ for two different initial data
Figure 2.  Initial and terminal configurations of $ (X_1, Y_1) $ and $ (X_2, Y_2) $
Figure 3.  Uniform $ \ell_1 $-stability
[1]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[2]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[3]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033

[4]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[5]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[6]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[7]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[8]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[9]

Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 533-574. doi: 10.3934/dcdss.2020406

[10]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133

[11]

Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021001

[12]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[13]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[14]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020124

[15]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[16]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[17]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[18]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[19]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[20]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]