
-
Previous Article
Existence-uniqueness and stability of the mild periodic solutions to a class of delayed stochastic partial differential equations and its applications
- DCDS-B Home
- This Issue
-
Next Article
Long-time dynamics of a diffusive epidemic model with free boundaries
Numerical analysis and simulation of an adhesive contact problem with damage and long memory
School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China |
This paper studies an adhesive contact model which also takes into account the damage and long memory term. The deformable body is composed of a viscoelastic material and the process is taken as quasistatic. The damage of the material caused by the compression or the tension is involved in the constitutive law and the damage function is modelled through a nonlinear parabolic inclusion. Meanwhile, the adhesion process is modelled by a bonding field on the contact surface while the contact is described by a nonmonotone normal compliance condition. The variational formulation of the model is governed by a coupled system which consists of a history-dependent hemivariational inequality for the displacement field, a nonlinear parabolic variational inequality for the damage field and an ordinary differential equation for the adhesion field. We first consider a fully discrete scheme of this system and then focus on deriving error estimates for numerical solutions. Under appropriate solution regularity assumptions, an optimal order error estimate is derived. At the end of this paper, {we report some two-dimensional numerical simulation results} for the contact problem in order to provide numerical evidence of the theoretical results.
References:
[1] |
T. Ammar, B. Benabderrahmane and S. Drabla, Frictional contact problems for electro-viscoelastic materials with long-term memory, damage, and adhesion, Electron. J. Diff. Equ., 2014 (2014), 21 pp. |
[2] |
T. A. Angelov,
On a rolling problem with damage and wear, Mech. Res. Comm., 26 (1999), 281-286.
doi: 10.1016/S0093-6413(99)00025-7. |
[3] |
K. Atkinson and W. M. Han, Theortical Numerical Analysis: A Functional Analysis Framework, Third edition, Texts in Applied Mathematics, 39. Springer, Dordrecht, 2009.
doi: 10.1007/978-1-4419-0458-4. |
[4] |
K. Bartosz, X. L. Cheng, P. Yu, Y. J. Kalita and C. Zheng,
Rothe method for parabolic variational–hemivariational inequalities, J. Math. Anal. Appl., 423 (2015), 841-862.
doi: 10.1016/j.jmaa.2014.09.078. |
[5] |
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Elements Methods, Third edition, Texts in Applied Mathematics, 15. Springer, New York, 2008.
doi: 10.1007/978-0-387-75934-0. |
[6] |
M. Campo, J. R. Fernández, W. M. Han and M. Sofonea,
A dynamic viscoelastic contact problem with normal compliance and damage, Finite Elem. Anal. Des., 42 (2005), 1-24.
doi: 10.1016/j.finel.2005.04.003. |
[7] |
M. Campo, J. R. Fernández and J. M. Viaño,
Numerical analysis and simulations of a quasistatic frictional contact problem with damage in viscoelasticity, J. Comput. Appl. Math., 192 (2006), 30-39.
doi: 10.1016/j.cam.2005.04.046. |
[8] |
M. Campo, J. R. Fernández and T.-V. Hoarau-Mantel,
Analysis of two frictional viscoplastic contact problems with damage, J. Comput. Appl. Math., 196 (2006), 180-197.
doi: 10.1016/j.cam.2005.08.025. |
[9] |
O. Chau,
Numerical analysis of a thermal contact problem with adhesion, Comp. Appl. Math., 37 (2018), 5424-5455.
doi: 10.1007/s40314-018-0642-2. |
[10] |
O. Chau, J. R. Fernández, M. Shillor and M. Sofonea,
Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion, J. Comput. Appl. Math., 159 (2003), 431-465.
doi: 10.1016/S0377-0427(03)00547-8. |
[11] |
X. L. Cheng, Q. C. Xiao, S. Migórski and A. Ochal,
Error estimate for quasistatic history-dependent contact model, Comput. Math. Appl., 77 (2019), 2943-2952.
doi: 10.1016/j.camwa.2018.08.058. |
[12] |
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, Vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. |
[13] |
M. Cocu and R. Rocca,
Existence results for unilateral quasistatic contact problem with friction and adhesion, Math. Model Numer. Anal., 34 (2000), 981-1001.
doi: 10.1051/m2an:2000112. |
[14] |
M. Frémond,
Equilibre des structures qui adhèrent à leur support, C. R. Acad. Sci. Paris Série II Méc. Phys. Chim. Sci. Univers Sci. Terre, 295 (1982), 913-916.
|
[15] |
M. Frémond,
Adhérence des solids, J. Mécan. Théor. Appl., 6 (1987), 383-407.
|
[16] |
M. Frémond and B. Nedjar, Damage, gradient of damage and principle of virtual work, Internat. J. Solids and Structures, 33 (1996), 1083-1103. Google Scholar |
[17] |
W. M. Han, S. Migórski and M. Sofonea,
A class of variational-hemivariational inequalities with applications to frictional contact problems, SIAM J. Math. Anal., 46 (2014), 3891-3912.
doi: 10.1137/140963248. |
[18] |
W. M. Han, M. Shillor and M. Sofonea,
Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage, J. Comput. Appl. Math., 137 (2001), 377-398.
doi: 10.1016/S0377-0427(00)00707-X. |
[19] |
W. M. Han and M. Sofonea,
Numerical analysis of hemivariational inequalities in contact mechanics, Acta Numer., 28 (2019), 175-286.
doi: 10.1017/S0962492919000023. |
[20] |
W. M. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, AMS/IP Studies in Advanced Mathematics, 30. American Mathematical Society, Providence, RI, International Press, omerville, MA, 2002.
![]() |
[21] |
W. M. Han, M. Sofonea and M. Barboteu,
Numerical analysis of elliptic hemivariational inequalities, SIAM J. Numer. Anal., 55 (2017), 640-663.
doi: 10.1137/16M1072085. |
[22] |
L. Jianu, M. Shillor and M. Sofonea,
A viscoelastic frictioness contact problem with adhesion, Appl. Anal., 80 (2001), 233-255.
doi: 10.1080/00036810108840990. |
[23] |
Y. X. Li and Z. H. Liu,
A quasistatic contact problem for viscoelastic materials with friction and damage, Nonlinear Anal., 73 (2010), 2221-2229.
doi: 10.1016/j.na.2010.05.051. |
[24] |
S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26. Springer, New York, 2013.
doi: 10.1007/978-1-4614-4232-5. |
[25] |
Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Monographs and Textbooks in Pure and Applied Mathematics, 188. Marcel Dekker, Inc., New York, 1995. |
[26] |
B. Nedjar,
A theoretical and computational setting for a geometrically nonlinear gradient damage modelling framework, Comput. Mech., 30 (2002), 65-80.
doi: 10.1007/s00466-002-0368-1. |
[27] |
M. Sofonea, W. M. Han and M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics (Boca Raton), 276. Chapman & Hall/CRC, Boca Raton, FL, 2006. |
[28] |
M. Sofonea and T. Raafat,
An electro-viscoelastic frictional contact problem with damage, Appl. Anal., 86 (2007), 503-518.
doi: 10.1080/00036810701286304. |
[29] |
W. Xu, Z. P. Huang, W. M. Han, W. B. Chen and C. Wang,
Numerical analysis of history-dependent hemivariational inequalities and applications to viscoelastic contact problems with normal penetration, Comput. Math. Appl., 77 (2019), 2596-2607.
doi: 10.1016/j.camwa.2018.12.038. |
[30] |
H. L. Xuan, X. L. Cheng, W. M. Han and Q. C. Xiao, Numerical analysis of a dynamic contact problems with history-dependent operators, Numer. Math-theory. Me., 13 (2020), 569-594. Google Scholar |
show all references
References:
[1] |
T. Ammar, B. Benabderrahmane and S. Drabla, Frictional contact problems for electro-viscoelastic materials with long-term memory, damage, and adhesion, Electron. J. Diff. Equ., 2014 (2014), 21 pp. |
[2] |
T. A. Angelov,
On a rolling problem with damage and wear, Mech. Res. Comm., 26 (1999), 281-286.
doi: 10.1016/S0093-6413(99)00025-7. |
[3] |
K. Atkinson and W. M. Han, Theortical Numerical Analysis: A Functional Analysis Framework, Third edition, Texts in Applied Mathematics, 39. Springer, Dordrecht, 2009.
doi: 10.1007/978-1-4419-0458-4. |
[4] |
K. Bartosz, X. L. Cheng, P. Yu, Y. J. Kalita and C. Zheng,
Rothe method for parabolic variational–hemivariational inequalities, J. Math. Anal. Appl., 423 (2015), 841-862.
doi: 10.1016/j.jmaa.2014.09.078. |
[5] |
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Elements Methods, Third edition, Texts in Applied Mathematics, 15. Springer, New York, 2008.
doi: 10.1007/978-0-387-75934-0. |
[6] |
M. Campo, J. R. Fernández, W. M. Han and M. Sofonea,
A dynamic viscoelastic contact problem with normal compliance and damage, Finite Elem. Anal. Des., 42 (2005), 1-24.
doi: 10.1016/j.finel.2005.04.003. |
[7] |
M. Campo, J. R. Fernández and J. M. Viaño,
Numerical analysis and simulations of a quasistatic frictional contact problem with damage in viscoelasticity, J. Comput. Appl. Math., 192 (2006), 30-39.
doi: 10.1016/j.cam.2005.04.046. |
[8] |
M. Campo, J. R. Fernández and T.-V. Hoarau-Mantel,
Analysis of two frictional viscoplastic contact problems with damage, J. Comput. Appl. Math., 196 (2006), 180-197.
doi: 10.1016/j.cam.2005.08.025. |
[9] |
O. Chau,
Numerical analysis of a thermal contact problem with adhesion, Comp. Appl. Math., 37 (2018), 5424-5455.
doi: 10.1007/s40314-018-0642-2. |
[10] |
O. Chau, J. R. Fernández, M. Shillor and M. Sofonea,
Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion, J. Comput. Appl. Math., 159 (2003), 431-465.
doi: 10.1016/S0377-0427(03)00547-8. |
[11] |
X. L. Cheng, Q. C. Xiao, S. Migórski and A. Ochal,
Error estimate for quasistatic history-dependent contact model, Comput. Math. Appl., 77 (2019), 2943-2952.
doi: 10.1016/j.camwa.2018.08.058. |
[12] |
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, Vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. |
[13] |
M. Cocu and R. Rocca,
Existence results for unilateral quasistatic contact problem with friction and adhesion, Math. Model Numer. Anal., 34 (2000), 981-1001.
doi: 10.1051/m2an:2000112. |
[14] |
M. Frémond,
Equilibre des structures qui adhèrent à leur support, C. R. Acad. Sci. Paris Série II Méc. Phys. Chim. Sci. Univers Sci. Terre, 295 (1982), 913-916.
|
[15] |
M. Frémond,
Adhérence des solids, J. Mécan. Théor. Appl., 6 (1987), 383-407.
|
[16] |
M. Frémond and B. Nedjar, Damage, gradient of damage and principle of virtual work, Internat. J. Solids and Structures, 33 (1996), 1083-1103. Google Scholar |
[17] |
W. M. Han, S. Migórski and M. Sofonea,
A class of variational-hemivariational inequalities with applications to frictional contact problems, SIAM J. Math. Anal., 46 (2014), 3891-3912.
doi: 10.1137/140963248. |
[18] |
W. M. Han, M. Shillor and M. Sofonea,
Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage, J. Comput. Appl. Math., 137 (2001), 377-398.
doi: 10.1016/S0377-0427(00)00707-X. |
[19] |
W. M. Han and M. Sofonea,
Numerical analysis of hemivariational inequalities in contact mechanics, Acta Numer., 28 (2019), 175-286.
doi: 10.1017/S0962492919000023. |
[20] |
W. M. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, AMS/IP Studies in Advanced Mathematics, 30. American Mathematical Society, Providence, RI, International Press, omerville, MA, 2002.
![]() |
[21] |
W. M. Han, M. Sofonea and M. Barboteu,
Numerical analysis of elliptic hemivariational inequalities, SIAM J. Numer. Anal., 55 (2017), 640-663.
doi: 10.1137/16M1072085. |
[22] |
L. Jianu, M. Shillor and M. Sofonea,
A viscoelastic frictioness contact problem with adhesion, Appl. Anal., 80 (2001), 233-255.
doi: 10.1080/00036810108840990. |
[23] |
Y. X. Li and Z. H. Liu,
A quasistatic contact problem for viscoelastic materials with friction and damage, Nonlinear Anal., 73 (2010), 2221-2229.
doi: 10.1016/j.na.2010.05.051. |
[24] |
S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26. Springer, New York, 2013.
doi: 10.1007/978-1-4614-4232-5. |
[25] |
Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Monographs and Textbooks in Pure and Applied Mathematics, 188. Marcel Dekker, Inc., New York, 1995. |
[26] |
B. Nedjar,
A theoretical and computational setting for a geometrically nonlinear gradient damage modelling framework, Comput. Mech., 30 (2002), 65-80.
doi: 10.1007/s00466-002-0368-1. |
[27] |
M. Sofonea, W. M. Han and M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics (Boca Raton), 276. Chapman & Hall/CRC, Boca Raton, FL, 2006. |
[28] |
M. Sofonea and T. Raafat,
An electro-viscoelastic frictional contact problem with damage, Appl. Anal., 86 (2007), 503-518.
doi: 10.1080/00036810701286304. |
[29] |
W. Xu, Z. P. Huang, W. M. Han, W. B. Chen and C. Wang,
Numerical analysis of history-dependent hemivariational inequalities and applications to viscoelastic contact problems with normal penetration, Comput. Math. Appl., 77 (2019), 2596-2607.
doi: 10.1016/j.camwa.2018.12.038. |
[30] |
H. L. Xuan, X. L. Cheng, W. M. Han and Q. C. Xiao, Numerical analysis of a dynamic contact problems with history-dependent operators, Numer. Math-theory. Me., 13 (2020), 569-594. Google Scholar |








[1] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[2] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[3] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[4] |
Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021002 |
[5] |
Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322 |
[6] |
Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168 |
[7] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[8] |
Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002 |
[9] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[10] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[11] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[12] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[13] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[14] |
Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273 |
[15] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[16] |
Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020389 |
[17] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[18] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[19] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[20] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]