doi: 10.3934/dcdsb.2020208

Periodic forcing on degenerate Hopf bifurcation

Henan Academy of Big Data, Zhengzhou University, Zhengzhou 450001, China

* Corresponding author: renjl@zzu.edu.cn

Received  October 2019 Revised  April 2020 Published  July 2020

This paper is devoted to the effect of periodic forcing on a system exhibiting a degenerate Hopf bifurcation. Two methods are employed to investigate bifurcations of periodic solution for the periodically forced system. It is obtained by averaging method that the system undergoes fold bifurcation, transcritical bifurcation, and even degenerate Hopf bifurcation of periodic solution. On the other hand, it is also shown by Poincaré map that the system will undergo fold bifurcation, transcritical bifurcation, Neimark-Sacker bifurcation and flip bifurcation. Finally, we make a comparison between these two methods.

Citation: Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020208
References:
[1]

F. BarraquandS. Louca and K. C. Abbott, Moving forward in circles: Challenges and opportunities in modelling population cycles, Ecol. Lett., 20 (2017), 1074-1092.   Google Scholar

[2]

A. K. Bajaj, Resonant parametric perturbations of the Hopf bifurcation, J. Math. Anal. Appl., 115 (1986), 214-224.  doi: 10.1016/0022–247X(86)90035–1.  Google Scholar

[3]

J. H. Bao and Q. G. Yang, A new method to find homoclinic and heteroclinic orbits, Appl. Math. Comput., 217 (2011), 6526-6540.  doi: 10.1016/j.amc.2011.01.032.  Google Scholar

[4]

E. BenincàB. Ballantine and S. P. Ellner, Species fluctuations sustained by a cyclic succession at the edge of chaos, P. Natl. Acad. Sci. USA, 112 (2015), 6389-6394.   Google Scholar

[5]

S. N. Chow and M. P. John, Integral averaging and bifurcation, J. Differ. Equations, 26 (1977), 112-159.  doi: 10.1016/0022–0396(77)90101–2.  Google Scholar

[6]

Z. B. Cheng and F. F. Li, Positive periodic solutions for a kind of second–order neutral differential equations with variable coefficient and delay, Mediterr. J. Math., 15 (2018), Paper No. 134, 19 pp. doi: 10.1007/s00009–018–1184–y.  Google Scholar

[7]

Z. B. Cheng and Q. G. Yuan, Damped superlinear duffing equation with strong singularity of repulsive type, J. Fix. Piont Theory A, 22 (2020), Paper No. 37, 18 pp. doi: 10.1007/s11784–020–0774–z.  Google Scholar

[8]

E. J. Doedel and B. E. Oldeman, AUTO–07P: continuation and bifurcation software for ordinary differential equations, http://cmvl.cs.concordia.ca/auto., 2012. Google Scholar

[9]

W. W. FarrC. Z. LiI. S. Labouriau and W. F. Langford, Degenerate Hopf bifurcation formulas and Hilbert's 16th problem, SIAM J. Math. Anal., 20 (1989), 13-30.  doi: 10.1137/0520002.  Google Scholar

[10]

J. M. González–Miranda, On the effect of circadian oscillations on biochemical cell signaling by NF–B, J. Theor. Biol., 335 (2013), 283-294.  doi: 10.1016/j.jtbi.2013.06.027.  Google Scholar

[11]

P. Gross, On harmonic resonance in forced nonlinear oscillators exhibiting a Hopf bifurcation, IMA J. Appl. Math., 50 (1993), 1-12.  doi: 10.1093/imamat/50.1.1.  Google Scholar

[12]

L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1991. doi: 10.1007/978–1–4684–0392–3.  Google Scholar

[13]

J. M. Gambaudo, Perturbation of a Hopf bifurcation by an external time–periodic forcing, J. Differ. Equations, 57 (1985), 172-199.  doi: 10.1016/0022–0396(85)90076–2.  Google Scholar

[14]

W. L. Kath, Resonance in periodically perturbed Hopf bifurcation, Stud. Appl. Math., 65 (1981), 95-112.  doi: 10.1002/sapm198165295.  Google Scholar

[15]

Y. A. KuznetsovS. Muratori and S. Rinaldi, Bifurcations and chaos in a periodic predator–prey model, Int. J. Bifurcat. Chaos, 2 (1992), 117-128.  doi: 10.1142/S0218127492000112.  Google Scholar

[16]

X. P. LiJ. L. Ren and S. A. Campbell, How seasonal forcing influences the complexity of a predator–prey system, Discrete Cont. Dyn.–B, 23 (2018), 785-807.  doi: 10.3934/dcdsb.2018043.  Google Scholar

[17]

M. A. McKarninL. D. Schmidt and R. Aris, Response of nonlinear oscillators to forced oscillations: Three chemical reaction case studies, Chem. Eng. Sci., 43 (1988), 2833-2844.  doi: 10.1016/0009–2509(88)80026–5.  Google Scholar

[18]

N. S. Namachchivaya and S. T. Ariaratnam, Periodically Perturbed Hopf Bifurcation, SIAM J. Appl. Math., 47 (1987), 15-39.  doi: 10.1137/0147002.  Google Scholar

[19]

L. M. Perko, Higher order averaging and related methods for perturbed periodic and quasi–periodic systems, SIAM J. Appl. Math., 17 (1969), 698-724.  doi: 10.1137/0117065.  Google Scholar

[20]

J. L. Ren and Q. G. Yuan, Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate, Chaos, 27 (2017), 083124, 15pp. doi: 10.1063/1.5000152.  Google Scholar

[21]

J. L. Ren and L. P. Yu, Codimension–two bifurcation, chaos control in a discrete–time information diffusion model, J. Nonlinear Sci., 26 (2016), 1895-1931.  doi: 10.1007/s00332–016–9323–8.  Google Scholar

[22]

J. L. Ren and X. P. Li, Bifurcations in a seasonally forced predator–prey model with generalized Holling type Ⅳ functional response, Int. J. Bifurcat. Chaos, 26 (2016), 1650203, 19pp. doi: 10.1142/S0218127416502035.  Google Scholar

[23]

S. Rosenblat and D. S. Cohen, Periodically perturbed bifurcation–1. Simple bifurcation, Stud. Appl. Math., 63 (1980), 1-23.  doi: 10.1002/sapm19806311.  Google Scholar

[24]

S. Rosenblat and D. S. Cohen, Periodically perturbed bifurcation. Ⅱ. Hopf bifurcation, Stud. Appl. Math., 64 (1981), 143-175.  doi: 10.1002/sapm1981642143.  Google Scholar

[25]

A. Rego–CostaF. Debarre and L. M. Chevin, Chaos and the (un)predictability of evolution in a changing environment, Evolution, 72 (2018), 375-385.  doi: 10.1111/evo.13407.  Google Scholar

[26]

J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems(2nd edition), (Springer, New York, NY), 2007.  Google Scholar

[27]

Y. W. TaoX. P. Li and J. L. Ren, A repeated yielding model under periodic perturbation., Nonlinear Dynam., 94 (2018), 2511-2525.  doi: 10.1007/s11071–018–4506–5.  Google Scholar

[28]

Y. Takeuchi, Global Dynamical Properties of Lotka–Volterra Systems, (World Scientific), 1996. doi: 10.1142/9789812830548.  Google Scholar

[29]

D. M. Xiao and H. P. Zhu, Multiple focus and Hopf bifurcations in a predator–prey system with nonmonotonic functional response, SIAM J. Appl. Math., 66 (2006), 802-819.  doi: 10.1137/050623449.  Google Scholar

[30]

Y. Y. Zhang and M. Golubitsky, Periodically forced Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 10 (2011), 1272-1306.  doi: 10.1137/10078637X.  Google Scholar

show all references

References:
[1]

F. BarraquandS. Louca and K. C. Abbott, Moving forward in circles: Challenges and opportunities in modelling population cycles, Ecol. Lett., 20 (2017), 1074-1092.   Google Scholar

[2]

A. K. Bajaj, Resonant parametric perturbations of the Hopf bifurcation, J. Math. Anal. Appl., 115 (1986), 214-224.  doi: 10.1016/0022–247X(86)90035–1.  Google Scholar

[3]

J. H. Bao and Q. G. Yang, A new method to find homoclinic and heteroclinic orbits, Appl. Math. Comput., 217 (2011), 6526-6540.  doi: 10.1016/j.amc.2011.01.032.  Google Scholar

[4]

E. BenincàB. Ballantine and S. P. Ellner, Species fluctuations sustained by a cyclic succession at the edge of chaos, P. Natl. Acad. Sci. USA, 112 (2015), 6389-6394.   Google Scholar

[5]

S. N. Chow and M. P. John, Integral averaging and bifurcation, J. Differ. Equations, 26 (1977), 112-159.  doi: 10.1016/0022–0396(77)90101–2.  Google Scholar

[6]

Z. B. Cheng and F. F. Li, Positive periodic solutions for a kind of second–order neutral differential equations with variable coefficient and delay, Mediterr. J. Math., 15 (2018), Paper No. 134, 19 pp. doi: 10.1007/s00009–018–1184–y.  Google Scholar

[7]

Z. B. Cheng and Q. G. Yuan, Damped superlinear duffing equation with strong singularity of repulsive type, J. Fix. Piont Theory A, 22 (2020), Paper No. 37, 18 pp. doi: 10.1007/s11784–020–0774–z.  Google Scholar

[8]

E. J. Doedel and B. E. Oldeman, AUTO–07P: continuation and bifurcation software for ordinary differential equations, http://cmvl.cs.concordia.ca/auto., 2012. Google Scholar

[9]

W. W. FarrC. Z. LiI. S. Labouriau and W. F. Langford, Degenerate Hopf bifurcation formulas and Hilbert's 16th problem, SIAM J. Math. Anal., 20 (1989), 13-30.  doi: 10.1137/0520002.  Google Scholar

[10]

J. M. González–Miranda, On the effect of circadian oscillations on biochemical cell signaling by NF–B, J. Theor. Biol., 335 (2013), 283-294.  doi: 10.1016/j.jtbi.2013.06.027.  Google Scholar

[11]

P. Gross, On harmonic resonance in forced nonlinear oscillators exhibiting a Hopf bifurcation, IMA J. Appl. Math., 50 (1993), 1-12.  doi: 10.1093/imamat/50.1.1.  Google Scholar

[12]

L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1991. doi: 10.1007/978–1–4684–0392–3.  Google Scholar

[13]

J. M. Gambaudo, Perturbation of a Hopf bifurcation by an external time–periodic forcing, J. Differ. Equations, 57 (1985), 172-199.  doi: 10.1016/0022–0396(85)90076–2.  Google Scholar

[14]

W. L. Kath, Resonance in periodically perturbed Hopf bifurcation, Stud. Appl. Math., 65 (1981), 95-112.  doi: 10.1002/sapm198165295.  Google Scholar

[15]

Y. A. KuznetsovS. Muratori and S. Rinaldi, Bifurcations and chaos in a periodic predator–prey model, Int. J. Bifurcat. Chaos, 2 (1992), 117-128.  doi: 10.1142/S0218127492000112.  Google Scholar

[16]

X. P. LiJ. L. Ren and S. A. Campbell, How seasonal forcing influences the complexity of a predator–prey system, Discrete Cont. Dyn.–B, 23 (2018), 785-807.  doi: 10.3934/dcdsb.2018043.  Google Scholar

[17]

M. A. McKarninL. D. Schmidt and R. Aris, Response of nonlinear oscillators to forced oscillations: Three chemical reaction case studies, Chem. Eng. Sci., 43 (1988), 2833-2844.  doi: 10.1016/0009–2509(88)80026–5.  Google Scholar

[18]

N. S. Namachchivaya and S. T. Ariaratnam, Periodically Perturbed Hopf Bifurcation, SIAM J. Appl. Math., 47 (1987), 15-39.  doi: 10.1137/0147002.  Google Scholar

[19]

L. M. Perko, Higher order averaging and related methods for perturbed periodic and quasi–periodic systems, SIAM J. Appl. Math., 17 (1969), 698-724.  doi: 10.1137/0117065.  Google Scholar

[20]

J. L. Ren and Q. G. Yuan, Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate, Chaos, 27 (2017), 083124, 15pp. doi: 10.1063/1.5000152.  Google Scholar

[21]

J. L. Ren and L. P. Yu, Codimension–two bifurcation, chaos control in a discrete–time information diffusion model, J. Nonlinear Sci., 26 (2016), 1895-1931.  doi: 10.1007/s00332–016–9323–8.  Google Scholar

[22]

J. L. Ren and X. P. Li, Bifurcations in a seasonally forced predator–prey model with generalized Holling type Ⅳ functional response, Int. J. Bifurcat. Chaos, 26 (2016), 1650203, 19pp. doi: 10.1142/S0218127416502035.  Google Scholar

[23]

S. Rosenblat and D. S. Cohen, Periodically perturbed bifurcation–1. Simple bifurcation, Stud. Appl. Math., 63 (1980), 1-23.  doi: 10.1002/sapm19806311.  Google Scholar

[24]

S. Rosenblat and D. S. Cohen, Periodically perturbed bifurcation. Ⅱ. Hopf bifurcation, Stud. Appl. Math., 64 (1981), 143-175.  doi: 10.1002/sapm1981642143.  Google Scholar

[25]

A. Rego–CostaF. Debarre and L. M. Chevin, Chaos and the (un)predictability of evolution in a changing environment, Evolution, 72 (2018), 375-385.  doi: 10.1111/evo.13407.  Google Scholar

[26]

J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems(2nd edition), (Springer, New York, NY), 2007.  Google Scholar

[27]

Y. W. TaoX. P. Li and J. L. Ren, A repeated yielding model under periodic perturbation., Nonlinear Dynam., 94 (2018), 2511-2525.  doi: 10.1007/s11071–018–4506–5.  Google Scholar

[28]

Y. Takeuchi, Global Dynamical Properties of Lotka–Volterra Systems, (World Scientific), 1996. doi: 10.1142/9789812830548.  Google Scholar

[29]

D. M. Xiao and H. P. Zhu, Multiple focus and Hopf bifurcations in a predator–prey system with nonmonotonic functional response, SIAM J. Appl. Math., 66 (2006), 802-819.  doi: 10.1137/050623449.  Google Scholar

[30]

Y. Y. Zhang and M. Golubitsky, Periodically forced Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 10 (2011), 1272-1306.  doi: 10.1137/10078637X.  Google Scholar

Figure 1.  (a) Phase portrait near a degenerate Hopf bifurcation for $ r_{1} = 0.3 $, $ r_{2} = 0.6 $, $ a_{1} = 0.42 $, $ a_{2} = 0.6 $, $ b_{1} = 1.0857 $, $ b_{2} = 0.25 $. (b) Phase portrait near a degenerate Hopf bifurcation for $ r_{1} = 0.3 $, $ r_{2} = 0.6 $, $ a_{1} = 0.447 $, $ a_{2} = 0.6 $, $ b_{1} = 1.13 $, $ b_{2} = 0.25 $
Figure 2.  Phase portrait of the averaged system, the red points are the equilibria. (a) For $ \mu = 0.06 $, $ \nu = 3 $, $ \alpha = 1 $, $ \beta = 2 $. (b) For $ \mu = 0 $, $ \nu = 3 $, $ \alpha = 1 $, $ \beta = 2 $
Figure 3.  (b) Bifurcation diagram of the forced system (8) in $ (a_{1},\epsilon) $-plane for $ r_{1} = 0.3,b_{1} = 1.13,r_{2} = 0.6,a_{2} = 0.6,b_{2} = 0.25 $. (c) and (d) Partial enlargements of (b). The solutions of system (8) are as follows, region 1-unstable period-one solution and stable quasiperiodic solution; region 2-unstable period-one solution and unstable period-two solution; region 3-unstable period-one solution, unstable period-two solutions, and period-four solution; region 4-stable and unstable period-one solutions; region 5-stable and unstable period-one solutions
Figure 4.  (a) Bifurcation diagram of the forced system (8) in $ (a_{1},\epsilon) $-plane for $ r_{1} = 0.3,b_{1} = 0.85,r_{2} = 0.4,a_{2} = 0.6,b_{2} = 0.4 $. (b), (c) Partial enlargements of (a). The solutions of system (8) are as follows, region 1-unstable period-one solutions, unstable period-two solutions, and period-four solution; region 2-stable and unstable period-one solutions; region 3-unstable period-one solutions and stable quasiperiodic solution; region 4-no periodic solution; region 5-unstable period-one solutions and unstable period-two solutions; region 6-stable and unstable period-one solutions
Figure 5.  (a) Bifurcation diagram of the forced system (26) in $ (b_{1},\epsilon) $-plane for $ r_{1} = 0.3,a_{1} = 0.2,r_{2} = 0.4,a_{2} = 0.4,b_{2} = 0.162 $. (b) Partial enlargements of (a). The solutions of system (26) are as follows, region 1-stable and unstable period-one solutions, unstable quasiperiodic solution; region 2- unstable period-one solutions; region 3-unstable period-one solutions, unstable period-two solutions, and period-four solution; region 4-unstable period-one solutions, stable period-two solutions; region 5-stable and unstable period-one solutions
Figure 6.  (a) Bifurcation diagram of the forced system (26) in $ (b_{1},\epsilon) $-plane for $ r_{1} = 0.3,b_{1} = 0.6,r_{2} = 0.4,a_{2} = 0.6,b_{2} = 0.4 $. (b) bifurcation curves of a period-one saddle. (c) and (d) Partial enlargements of (a). The solutions of system (26) are as follows, region 1-stable and unstable period-one solutions; region 2- unstable period-one solutions and stable quasiperiodic solution; region 3-unstable period-one solutions, unstable period-two solutions, and period-four solution; region 4-stable period-one solutions; region 5-unstable period-one solutions, unstable period-two solutions; region 6-stable and unstable period-one solutions
Figure 7.  (a) Bifurcation diagram of the forced system (27) in $ (a_{2},\epsilon) $-plane for $ r_{1} = 0.3, a_{1} = 0.2, b_{1} = 0.5,r_{2} = 0.4, b_{2} = 0.162 $. (b) Bifurcation diagram of the forced system (27) in $ (a_{2},\epsilon) $-plane for $ r_{1} = 0.3, a_{1} = 0.6, b_{1} = 0.83, r_{2} = 0.4, b_{2} = 0.4 $
Figure 8.  Bifurcation diagram of the forced system (28) in $ (b_{2},\epsilon) $-plane for the case $ r_{1} = 0.3,a_{1} = 0.2,b_{1} = 0.83,r_{2} = 0.4,a_{2} = 0.4 $
Figure 9.  (a) Bifurcation diagram of the forced system (28) in $ (b_{2},\epsilon) $-plane for $ r_{1} = 0.3,a_{1} = 0.6,b_{1} = 0.85,r_{2} = 0.4,a_{2} = 0.6 $. (b), (c) and (d) Partial enlargements of (a). The solutions of system (28) are as follows, region 1-unstable period-one solution, unstable period-two solutions, and period-four solution or chaos in some subregion; region 2-stable and unstable period-one solution; region 3-unstable period-one solution and stable quasiperiodic solution; region 4-unstable period-one solutions and unstable period-two solutions; region 5-stable and unstable period-one solutions; region 6-unstable period-one solution, unstable period-two solutions, and period-four solution
Figure 10.  Phase portraits and Poincaré section of the periodically forced system. (a) A stable period-two orbit in system (27) for $ r_{1} = 0.3 $, $ r_{2} = 0.4 $, $ a_{1} = 0.6 $, $ a_{2} = 0.4 $, $ b_{1} = 0.83 $, $ b_{2} = 0.4 $, $ \epsilon = 0.337 $. (b) A stable period-four orbit in system (27) for $ r_{1} = 0.3 $, $ r_{2} = 0.4 $, $ a_{1} = 0.6 $, $ a_{2} = 0.4 $, $ b_{1} = 0.83 $, $ b_{2} = 0.4 $, $ \epsilon = 0.277 $. (c) Torus in system (8) for $ r_{1} = 0.3 $, $ r_{2} = 0.6 $, $ a_{1} = 0.45183 $, $ a_{2} = 0.6 $, $ b_{1} = 1.13 $, $ b_{2} = 0.25 $, $ \epsilon = 0.277 $. (d) Poincaré section of the torus
[1]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[2]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[3]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[4]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[5]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[6]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[7]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[8]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020394

[9]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[10]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[11]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[12]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[13]

Zi Xu, Siwen Wang, Jinjin Huang. An efficient low complexity algorithm for box-constrained weighted maximin dispersion problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 971-979. doi: 10.3934/jimo.2020007

[14]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297

[15]

João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321

[16]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[17]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[18]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[19]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[20]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (42)
  • HTML views (219)
  • Cited by (0)

Other articles
by authors

[Back to Top]