doi: 10.3934/dcdsb.2020208

Periodic forcing on degenerate Hopf bifurcation

Henan Academy of Big Data, Zhengzhou University, Zhengzhou 450001, China

* Corresponding author: renjl@zzu.edu.cn

Received  October 2019 Revised  April 2020 Published  July 2020

This paper is devoted to the effect of periodic forcing on a system exhibiting a degenerate Hopf bifurcation. Two methods are employed to investigate bifurcations of periodic solution for the periodically forced system. It is obtained by averaging method that the system undergoes fold bifurcation, transcritical bifurcation, and even degenerate Hopf bifurcation of periodic solution. On the other hand, it is also shown by Poincaré map that the system will undergo fold bifurcation, transcritical bifurcation, Neimark-Sacker bifurcation and flip bifurcation. Finally, we make a comparison between these two methods.

Citation: Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020208
References:
[1]

F. BarraquandS. Louca and K. C. Abbott, Moving forward in circles: Challenges and opportunities in modelling population cycles, Ecol. Lett., 20 (2017), 1074-1092.   Google Scholar

[2]

A. K. Bajaj, Resonant parametric perturbations of the Hopf bifurcation, J. Math. Anal. Appl., 115 (1986), 214-224.  doi: 10.1016/0022–247X(86)90035–1.  Google Scholar

[3]

J. H. Bao and Q. G. Yang, A new method to find homoclinic and heteroclinic orbits, Appl. Math. Comput., 217 (2011), 6526-6540.  doi: 10.1016/j.amc.2011.01.032.  Google Scholar

[4]

E. BenincàB. Ballantine and S. P. Ellner, Species fluctuations sustained by a cyclic succession at the edge of chaos, P. Natl. Acad. Sci. USA, 112 (2015), 6389-6394.   Google Scholar

[5]

S. N. Chow and M. P. John, Integral averaging and bifurcation, J. Differ. Equations, 26 (1977), 112-159.  doi: 10.1016/0022–0396(77)90101–2.  Google Scholar

[6]

Z. B. Cheng and F. F. Li, Positive periodic solutions for a kind of second–order neutral differential equations with variable coefficient and delay, Mediterr. J. Math., 15 (2018), Paper No. 134, 19 pp. doi: 10.1007/s00009–018–1184–y.  Google Scholar

[7]

Z. B. Cheng and Q. G. Yuan, Damped superlinear duffing equation with strong singularity of repulsive type, J. Fix. Piont Theory A, 22 (2020), Paper No. 37, 18 pp. doi: 10.1007/s11784–020–0774–z.  Google Scholar

[8]

E. J. Doedel and B. E. Oldeman, AUTO–07P: continuation and bifurcation software for ordinary differential equations, http://cmvl.cs.concordia.ca/auto., 2012. Google Scholar

[9]

W. W. FarrC. Z. LiI. S. Labouriau and W. F. Langford, Degenerate Hopf bifurcation formulas and Hilbert's 16th problem, SIAM J. Math. Anal., 20 (1989), 13-30.  doi: 10.1137/0520002.  Google Scholar

[10]

J. M. González–Miranda, On the effect of circadian oscillations on biochemical cell signaling by NF–B, J. Theor. Biol., 335 (2013), 283-294.  doi: 10.1016/j.jtbi.2013.06.027.  Google Scholar

[11]

P. Gross, On harmonic resonance in forced nonlinear oscillators exhibiting a Hopf bifurcation, IMA J. Appl. Math., 50 (1993), 1-12.  doi: 10.1093/imamat/50.1.1.  Google Scholar

[12]

L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1991. doi: 10.1007/978–1–4684–0392–3.  Google Scholar

[13]

J. M. Gambaudo, Perturbation of a Hopf bifurcation by an external time–periodic forcing, J. Differ. Equations, 57 (1985), 172-199.  doi: 10.1016/0022–0396(85)90076–2.  Google Scholar

[14]

W. L. Kath, Resonance in periodically perturbed Hopf bifurcation, Stud. Appl. Math., 65 (1981), 95-112.  doi: 10.1002/sapm198165295.  Google Scholar

[15]

Y. A. KuznetsovS. Muratori and S. Rinaldi, Bifurcations and chaos in a periodic predator–prey model, Int. J. Bifurcat. Chaos, 2 (1992), 117-128.  doi: 10.1142/S0218127492000112.  Google Scholar

[16]

X. P. LiJ. L. Ren and S. A. Campbell, How seasonal forcing influences the complexity of a predator–prey system, Discrete Cont. Dyn.–B, 23 (2018), 785-807.  doi: 10.3934/dcdsb.2018043.  Google Scholar

[17]

M. A. McKarninL. D. Schmidt and R. Aris, Response of nonlinear oscillators to forced oscillations: Three chemical reaction case studies, Chem. Eng. Sci., 43 (1988), 2833-2844.  doi: 10.1016/0009–2509(88)80026–5.  Google Scholar

[18]

N. S. Namachchivaya and S. T. Ariaratnam, Periodically Perturbed Hopf Bifurcation, SIAM J. Appl. Math., 47 (1987), 15-39.  doi: 10.1137/0147002.  Google Scholar

[19]

L. M. Perko, Higher order averaging and related methods for perturbed periodic and quasi–periodic systems, SIAM J. Appl. Math., 17 (1969), 698-724.  doi: 10.1137/0117065.  Google Scholar

[20]

J. L. Ren and Q. G. Yuan, Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate, Chaos, 27 (2017), 083124, 15pp. doi: 10.1063/1.5000152.  Google Scholar

[21]

J. L. Ren and L. P. Yu, Codimension–two bifurcation, chaos control in a discrete–time information diffusion model, J. Nonlinear Sci., 26 (2016), 1895-1931.  doi: 10.1007/s00332–016–9323–8.  Google Scholar

[22]

J. L. Ren and X. P. Li, Bifurcations in a seasonally forced predator–prey model with generalized Holling type Ⅳ functional response, Int. J. Bifurcat. Chaos, 26 (2016), 1650203, 19pp. doi: 10.1142/S0218127416502035.  Google Scholar

[23]

S. Rosenblat and D. S. Cohen, Periodically perturbed bifurcation–1. Simple bifurcation, Stud. Appl. Math., 63 (1980), 1-23.  doi: 10.1002/sapm19806311.  Google Scholar

[24]

S. Rosenblat and D. S. Cohen, Periodically perturbed bifurcation. Ⅱ. Hopf bifurcation, Stud. Appl. Math., 64 (1981), 143-175.  doi: 10.1002/sapm1981642143.  Google Scholar

[25]

A. Rego–CostaF. Debarre and L. M. Chevin, Chaos and the (un)predictability of evolution in a changing environment, Evolution, 72 (2018), 375-385.  doi: 10.1111/evo.13407.  Google Scholar

[26]

J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems(2nd edition), (Springer, New York, NY), 2007.  Google Scholar

[27]

Y. W. TaoX. P. Li and J. L. Ren, A repeated yielding model under periodic perturbation., Nonlinear Dynam., 94 (2018), 2511-2525.  doi: 10.1007/s11071–018–4506–5.  Google Scholar

[28]

Y. Takeuchi, Global Dynamical Properties of Lotka–Volterra Systems, (World Scientific), 1996. doi: 10.1142/9789812830548.  Google Scholar

[29]

D. M. Xiao and H. P. Zhu, Multiple focus and Hopf bifurcations in a predator–prey system with nonmonotonic functional response, SIAM J. Appl. Math., 66 (2006), 802-819.  doi: 10.1137/050623449.  Google Scholar

[30]

Y. Y. Zhang and M. Golubitsky, Periodically forced Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 10 (2011), 1272-1306.  doi: 10.1137/10078637X.  Google Scholar

show all references

References:
[1]

F. BarraquandS. Louca and K. C. Abbott, Moving forward in circles: Challenges and opportunities in modelling population cycles, Ecol. Lett., 20 (2017), 1074-1092.   Google Scholar

[2]

A. K. Bajaj, Resonant parametric perturbations of the Hopf bifurcation, J. Math. Anal. Appl., 115 (1986), 214-224.  doi: 10.1016/0022–247X(86)90035–1.  Google Scholar

[3]

J. H. Bao and Q. G. Yang, A new method to find homoclinic and heteroclinic orbits, Appl. Math. Comput., 217 (2011), 6526-6540.  doi: 10.1016/j.amc.2011.01.032.  Google Scholar

[4]

E. BenincàB. Ballantine and S. P. Ellner, Species fluctuations sustained by a cyclic succession at the edge of chaos, P. Natl. Acad. Sci. USA, 112 (2015), 6389-6394.   Google Scholar

[5]

S. N. Chow and M. P. John, Integral averaging and bifurcation, J. Differ. Equations, 26 (1977), 112-159.  doi: 10.1016/0022–0396(77)90101–2.  Google Scholar

[6]

Z. B. Cheng and F. F. Li, Positive periodic solutions for a kind of second–order neutral differential equations with variable coefficient and delay, Mediterr. J. Math., 15 (2018), Paper No. 134, 19 pp. doi: 10.1007/s00009–018–1184–y.  Google Scholar

[7]

Z. B. Cheng and Q. G. Yuan, Damped superlinear duffing equation with strong singularity of repulsive type, J. Fix. Piont Theory A, 22 (2020), Paper No. 37, 18 pp. doi: 10.1007/s11784–020–0774–z.  Google Scholar

[8]

E. J. Doedel and B. E. Oldeman, AUTO–07P: continuation and bifurcation software for ordinary differential equations, http://cmvl.cs.concordia.ca/auto., 2012. Google Scholar

[9]

W. W. FarrC. Z. LiI. S. Labouriau and W. F. Langford, Degenerate Hopf bifurcation formulas and Hilbert's 16th problem, SIAM J. Math. Anal., 20 (1989), 13-30.  doi: 10.1137/0520002.  Google Scholar

[10]

J. M. González–Miranda, On the effect of circadian oscillations on biochemical cell signaling by NF–B, J. Theor. Biol., 335 (2013), 283-294.  doi: 10.1016/j.jtbi.2013.06.027.  Google Scholar

[11]

P. Gross, On harmonic resonance in forced nonlinear oscillators exhibiting a Hopf bifurcation, IMA J. Appl. Math., 50 (1993), 1-12.  doi: 10.1093/imamat/50.1.1.  Google Scholar

[12]

L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1991. doi: 10.1007/978–1–4684–0392–3.  Google Scholar

[13]

J. M. Gambaudo, Perturbation of a Hopf bifurcation by an external time–periodic forcing, J. Differ. Equations, 57 (1985), 172-199.  doi: 10.1016/0022–0396(85)90076–2.  Google Scholar

[14]

W. L. Kath, Resonance in periodically perturbed Hopf bifurcation, Stud. Appl. Math., 65 (1981), 95-112.  doi: 10.1002/sapm198165295.  Google Scholar

[15]

Y. A. KuznetsovS. Muratori and S. Rinaldi, Bifurcations and chaos in a periodic predator–prey model, Int. J. Bifurcat. Chaos, 2 (1992), 117-128.  doi: 10.1142/S0218127492000112.  Google Scholar

[16]

X. P. LiJ. L. Ren and S. A. Campbell, How seasonal forcing influences the complexity of a predator–prey system, Discrete Cont. Dyn.–B, 23 (2018), 785-807.  doi: 10.3934/dcdsb.2018043.  Google Scholar

[17]

M. A. McKarninL. D. Schmidt and R. Aris, Response of nonlinear oscillators to forced oscillations: Three chemical reaction case studies, Chem. Eng. Sci., 43 (1988), 2833-2844.  doi: 10.1016/0009–2509(88)80026–5.  Google Scholar

[18]

N. S. Namachchivaya and S. T. Ariaratnam, Periodically Perturbed Hopf Bifurcation, SIAM J. Appl. Math., 47 (1987), 15-39.  doi: 10.1137/0147002.  Google Scholar

[19]

L. M. Perko, Higher order averaging and related methods for perturbed periodic and quasi–periodic systems, SIAM J. Appl. Math., 17 (1969), 698-724.  doi: 10.1137/0117065.  Google Scholar

[20]

J. L. Ren and Q. G. Yuan, Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate, Chaos, 27 (2017), 083124, 15pp. doi: 10.1063/1.5000152.  Google Scholar

[21]

J. L. Ren and L. P. Yu, Codimension–two bifurcation, chaos control in a discrete–time information diffusion model, J. Nonlinear Sci., 26 (2016), 1895-1931.  doi: 10.1007/s00332–016–9323–8.  Google Scholar

[22]

J. L. Ren and X. P. Li, Bifurcations in a seasonally forced predator–prey model with generalized Holling type Ⅳ functional response, Int. J. Bifurcat. Chaos, 26 (2016), 1650203, 19pp. doi: 10.1142/S0218127416502035.  Google Scholar

[23]

S. Rosenblat and D. S. Cohen, Periodically perturbed bifurcation–1. Simple bifurcation, Stud. Appl. Math., 63 (1980), 1-23.  doi: 10.1002/sapm19806311.  Google Scholar

[24]

S. Rosenblat and D. S. Cohen, Periodically perturbed bifurcation. Ⅱ. Hopf bifurcation, Stud. Appl. Math., 64 (1981), 143-175.  doi: 10.1002/sapm1981642143.  Google Scholar

[25]

A. Rego–CostaF. Debarre and L. M. Chevin, Chaos and the (un)predictability of evolution in a changing environment, Evolution, 72 (2018), 375-385.  doi: 10.1111/evo.13407.  Google Scholar

[26]

J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems(2nd edition), (Springer, New York, NY), 2007.  Google Scholar

[27]

Y. W. TaoX. P. Li and J. L. Ren, A repeated yielding model under periodic perturbation., Nonlinear Dynam., 94 (2018), 2511-2525.  doi: 10.1007/s11071–018–4506–5.  Google Scholar

[28]

Y. Takeuchi, Global Dynamical Properties of Lotka–Volterra Systems, (World Scientific), 1996. doi: 10.1142/9789812830548.  Google Scholar

[29]

D. M. Xiao and H. P. Zhu, Multiple focus and Hopf bifurcations in a predator–prey system with nonmonotonic functional response, SIAM J. Appl. Math., 66 (2006), 802-819.  doi: 10.1137/050623449.  Google Scholar

[30]

Y. Y. Zhang and M. Golubitsky, Periodically forced Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 10 (2011), 1272-1306.  doi: 10.1137/10078637X.  Google Scholar

Figure 1.  (a) Phase portrait near a degenerate Hopf bifurcation for $ r_{1} = 0.3 $, $ r_{2} = 0.6 $, $ a_{1} = 0.42 $, $ a_{2} = 0.6 $, $ b_{1} = 1.0857 $, $ b_{2} = 0.25 $. (b) Phase portrait near a degenerate Hopf bifurcation for $ r_{1} = 0.3 $, $ r_{2} = 0.6 $, $ a_{1} = 0.447 $, $ a_{2} = 0.6 $, $ b_{1} = 1.13 $, $ b_{2} = 0.25 $
Figure 2.  Phase portrait of the averaged system, the red points are the equilibria. (a) For $ \mu = 0.06 $, $ \nu = 3 $, $ \alpha = 1 $, $ \beta = 2 $. (b) For $ \mu = 0 $, $ \nu = 3 $, $ \alpha = 1 $, $ \beta = 2 $
Figure 3.  (b) Bifurcation diagram of the forced system (8) in $ (a_{1},\epsilon) $-plane for $ r_{1} = 0.3,b_{1} = 1.13,r_{2} = 0.6,a_{2} = 0.6,b_{2} = 0.25 $. (c) and (d) Partial enlargements of (b). The solutions of system (8) are as follows, region 1-unstable period-one solution and stable quasiperiodic solution; region 2-unstable period-one solution and unstable period-two solution; region 3-unstable period-one solution, unstable period-two solutions, and period-four solution; region 4-stable and unstable period-one solutions; region 5-stable and unstable period-one solutions
Figure 4.  (a) Bifurcation diagram of the forced system (8) in $ (a_{1},\epsilon) $-plane for $ r_{1} = 0.3,b_{1} = 0.85,r_{2} = 0.4,a_{2} = 0.6,b_{2} = 0.4 $. (b), (c) Partial enlargements of (a). The solutions of system (8) are as follows, region 1-unstable period-one solutions, unstable period-two solutions, and period-four solution; region 2-stable and unstable period-one solutions; region 3-unstable period-one solutions and stable quasiperiodic solution; region 4-no periodic solution; region 5-unstable period-one solutions and unstable period-two solutions; region 6-stable and unstable period-one solutions
Figure 5.  (a) Bifurcation diagram of the forced system (26) in $ (b_{1},\epsilon) $-plane for $ r_{1} = 0.3,a_{1} = 0.2,r_{2} = 0.4,a_{2} = 0.4,b_{2} = 0.162 $. (b) Partial enlargements of (a). The solutions of system (26) are as follows, region 1-stable and unstable period-one solutions, unstable quasiperiodic solution; region 2- unstable period-one solutions; region 3-unstable period-one solutions, unstable period-two solutions, and period-four solution; region 4-unstable period-one solutions, stable period-two solutions; region 5-stable and unstable period-one solutions
Figure 6.  (a) Bifurcation diagram of the forced system (26) in $ (b_{1},\epsilon) $-plane for $ r_{1} = 0.3,b_{1} = 0.6,r_{2} = 0.4,a_{2} = 0.6,b_{2} = 0.4 $. (b) bifurcation curves of a period-one saddle. (c) and (d) Partial enlargements of (a). The solutions of system (26) are as follows, region 1-stable and unstable period-one solutions; region 2- unstable period-one solutions and stable quasiperiodic solution; region 3-unstable period-one solutions, unstable period-two solutions, and period-four solution; region 4-stable period-one solutions; region 5-unstable period-one solutions, unstable period-two solutions; region 6-stable and unstable period-one solutions
Figure 7.  (a) Bifurcation diagram of the forced system (27) in $ (a_{2},\epsilon) $-plane for $ r_{1} = 0.3, a_{1} = 0.2, b_{1} = 0.5,r_{2} = 0.4, b_{2} = 0.162 $. (b) Bifurcation diagram of the forced system (27) in $ (a_{2},\epsilon) $-plane for $ r_{1} = 0.3, a_{1} = 0.6, b_{1} = 0.83, r_{2} = 0.4, b_{2} = 0.4 $
Figure 8.  Bifurcation diagram of the forced system (28) in $ (b_{2},\epsilon) $-plane for the case $ r_{1} = 0.3,a_{1} = 0.2,b_{1} = 0.83,r_{2} = 0.4,a_{2} = 0.4 $
Figure 9.  (a) Bifurcation diagram of the forced system (28) in $ (b_{2},\epsilon) $-plane for $ r_{1} = 0.3,a_{1} = 0.6,b_{1} = 0.85,r_{2} = 0.4,a_{2} = 0.6 $. (b), (c) and (d) Partial enlargements of (a). The solutions of system (28) are as follows, region 1-unstable period-one solution, unstable period-two solutions, and period-four solution or chaos in some subregion; region 2-stable and unstable period-one solution; region 3-unstable period-one solution and stable quasiperiodic solution; region 4-unstable period-one solutions and unstable period-two solutions; region 5-stable and unstable period-one solutions; region 6-unstable period-one solution, unstable period-two solutions, and period-four solution
Figure 10.  Phase portraits and Poincaré section of the periodically forced system. (a) A stable period-two orbit in system (27) for $ r_{1} = 0.3 $, $ r_{2} = 0.4 $, $ a_{1} = 0.6 $, $ a_{2} = 0.4 $, $ b_{1} = 0.83 $, $ b_{2} = 0.4 $, $ \epsilon = 0.337 $. (b) A stable period-four orbit in system (27) for $ r_{1} = 0.3 $, $ r_{2} = 0.4 $, $ a_{1} = 0.6 $, $ a_{2} = 0.4 $, $ b_{1} = 0.83 $, $ b_{2} = 0.4 $, $ \epsilon = 0.277 $. (c) Torus in system (8) for $ r_{1} = 0.3 $, $ r_{2} = 0.6 $, $ a_{1} = 0.45183 $, $ a_{2} = 0.6 $, $ b_{1} = 1.13 $, $ b_{2} = 0.25 $, $ \epsilon = 0.277 $. (d) Poincaré section of the torus
[1]

Jaume Llibre, Claudio A. Buzzi, Paulo R. da Silva. 3-dimensional Hopf bifurcation via averaging theory. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 529-540. doi: 10.3934/dcds.2007.17.529

[2]

Jaume Llibre, Amar Makhlouf, Sabrina Badi. $3$ - dimensional Hopf bifurcation via averaging theory of second order. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1287-1295. doi: 10.3934/dcds.2009.25.1287

[3]

Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098

[4]

Bin Li, Hai Huyen Dam, Antonio Cantoni. A low-complexity zero-forcing Beamformer design for multiuser MIMO systems via a dual gradient method. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 297-304. doi: 10.3934/naco.2016012

[5]

Xingwu Chen, Jaume Llibre, Weinian Zhang. Averaging approach to cyclicity of hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3953-3965. doi: 10.3934/dcdsb.2017203

[6]

Jaume Llibre, Clàudia Valls. Hopf bifurcation for some analytic differential systems in $\R^3$ via averaging theory. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 779-790. doi: 10.3934/dcds.2011.30.779

[7]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020173

[8]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[9]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[10]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[11]

Aleksander Ćwiszewski, Wojciech Kryszewski. On a generalized Poincaré-Hopf formula in infinite dimensions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 953-978. doi: 10.3934/dcds.2011.29.953

[12]

Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129

[13]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[14]

Xueping Li, Jingli Ren, Sue Ann Campbell, Gail S. K. Wolkowicz, Huaiping Zhu. How seasonal forcing influences the complexity of a predator-prey system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 785-807. doi: 10.3934/dcdsb.2018043

[15]

Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152

[16]

Gheorghe Tigan. Degenerate with respect to parameters fold-Hopf bifurcations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2115-2140. doi: 10.3934/dcds.2017091

[17]

Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71

[18]

R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure & Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147

[19]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020344

[20]

Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]