-
Previous Article
Analytic solution to an interfacial flow with kinetic undercooling in a time-dependent gap Hele-Shaw cell
- DCDS-B Home
- This Issue
-
Next Article
Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces
Variational solutions of stochastic partial differential equations with cylindrical Lévy noise
1. | School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK |
2. | Department of Mathematics, King's College London, London WC2R 2LS, UK |
3. | Institute of Mathematical Stochastics, Faculty of Mathematics, TU Dresden, 01062 Dresden, Germany |
$ \, \mathrm{d}X(t) = F(X(t)) \, \mathrm{d}t + G(X(t)) \, \mathrm{d}L(t) $ |
$ L $ |
$ F $ |
$ G $ |
References:
[1] |
D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge: Cambridge University Press, 2009.
doi: 10.1017/CBO9780511809781.![]() ![]() |
[2] |
D. Applebaum and M. Riedle,
Cylindrical Lévy processes in Banach spaces, Proc. Lond. Math. Soc., 101 (2010), 697-726.
doi: 10.1112/plms/pdq004. |
[3] |
N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge: Cambridge University Press, 1989.
![]() |
[4] |
Z. Brzeźniak, B. Goldys, P. Imkeller, S. Peszat, E. Priola and J. Zabczyk,
Time irregularity of generalized Ornstein-Uhlenbeck processes, C. R. Math. Acad. Sci. Paris, 348 (2010), 273-276.
doi: 10.1016/j.crma.2010.01.022. |
[5] |
Z. Brzeźniak, W. Liu and J. Zhu,
Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal. Real World Appl., 17 (2014), 283-310.
doi: 10.1016/j.nonrwa.2013.12.005. |
[6] |
Z. Brzeźniak and J. Zabczyk,
Regularity of Ornstein-Uhlenbeck processes driven by a Lévy white noise, Potential Anal., 32 (2010), 153-188.
doi: 10.1007/s11118-009-9149-1. |
[7] |
P. Embrechts and C. M. Goldie,
Comparing the tail of an infinitely divisible distribution with integrals of its Lévy measure, Ann. Probab., 9 (1981), 468-481.
doi: 10.1214/aop/1176994419. |
[8] |
W. Feller, An Introduction to Probability Theory and Its Applications. Vol. Ⅱ, New York-London-Sydney: John Wiley & Sons, Inc., second edition, 1971. |
[9] |
I. Gyöngy,
On stochastic equations with respect to semimartingales. Ⅲ, Stochastics, 7 (1982), 231-254.
doi: 10.1080/17442508208833220. |
[10] |
I. Gyöngy and N. V. Krylov,
On stochastic equations with respect to semimartingales. I, Stochastics, 4 (1980/81), 1-21.
doi: 10.1080/03610918008833154. |
[11] |
I. Gyöngy and N. V. Krylov,
On stochastics equations with respect to semimartingales. Ⅱ. Itô formula in Banach spaces, Stochastics, 6 (1981/82), 153-173.
doi: 10.1080/17442508208833202. |
[12] |
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Amsterdam: North-Holland Publishing Co., 1981. |
[13] |
A. Jakubowski and M. Riedle,
Stochastic integration with respect to cylindrical Lévy processes, Ann. Probab., 45 (2017), 4273-4306.
doi: 10.1214/16-AOP1164. |
[14] |
T. Kosmala, Stochastic Partial Differential Equations Driven by Cylindrical Lévy Processes, PhD thesis, King's College London, 2020. Google Scholar |
[15] |
N. V. Krylov and B. L. Rozovskii, Stochastic evolution equations, Translated from Itogi Naukii Tekhniki, Seriya Sovremennye Problemy Matematiki, 14 (1979), 71–147. |
[16] |
U. Kumar and M. Riedle, Invariant measure for the stochastic Cauchy problem driven by a cylindrical Lévy process, 2019., Preprint available at https://arXiv.org/abs/1904.03118. Google Scholar |
[17] |
U. Kumar and M. Riedle, The stochastic Cauchy problem driven by a cylindrical Lévy process, Electron. J. Probab., 25 (2020), paper no. 10. Google Scholar |
[18] |
W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Cham: Springer, 2015.
doi: 10.1007/978-3-319-22354-4. |
[19] |
Y. Liu and J. Zhai,
A note on time regularity of generalized Ornstein-Uhlenbeck processes with cylindrical stable noise, C. R. Math. Acad. Sci. Paris, 350 (2012), 97-100.
doi: 10.1016/j.crma.2011.11.017. |
[20] |
M. Métivier, Semimartingales: A Course on Stochastic Processes, Berlin: Walter de Gruyter & Co., 1982. |
[21] |
S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise. An Evolution Equation Approach, Cambridge: Cambridge University Press, 2007.
doi: 10.1017/CBO9780511721373.![]() ![]() |
[22] |
S. Peszat and J. Zabczyk,
Time regularity of solutions to linear equations with Lévy noise in infinite dimensions, Stochastic Process. Appl., 123 (2013), 719-751.
doi: 10.1016/j.spa.2012.10.012. |
[23] |
C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Berlin: Springer, 2007. |
[24] |
E. Priola and J. Zabczyk, On linear evolution equations for a class of cylindrical Lévy noises, In Stochastic Partial Differential Equations and Applications, volume 25 of Quad. Mat., 223–242. Dept. Math., Seconda Univ. Napoli, Caserta, 2010. |
[25] |
E. Priola and J. Zabczyk,
Structural properties of semilinear SPDEs driven by cylindrical stable processes, Probab. Theory Related Fields, 149 (2011), 97-137.
doi: 10.1007/s00440-009-0243-5. |
[26] |
M. Riedle,
Infinitely divisible cylindrical measures on Banach spaces, Studia Math., 207 (2011), 235-256.
doi: 10.4064/sm207-3-2. |
[27] |
M. Riedle, Stochastic integration with respect to cylindrical Lévy processes in Hilbert spaces: an $L^2$ approach, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 17 (2014), 1450008, 19 pp.
doi: 10.1142/S0219025714500088. |
[28] |
M. Riedle,
Ornstein-Uhlenbeck processes driven by cylindrical Lévy processes, Potential Anal., 42 (2015), 809-838.
doi: 10.1007/s11118-014-9458-x. |
[29] |
G. Samorodnitsky, Stochastic Processes and Long Range Dependence, Cham: Springer, 2016.
doi: 10.1007/978-3-319-45575-4. |
[30] |
K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge: Cambridge University Press, 2013.
![]() |
show all references
References:
[1] |
D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge: Cambridge University Press, 2009.
doi: 10.1017/CBO9780511809781.![]() ![]() |
[2] |
D. Applebaum and M. Riedle,
Cylindrical Lévy processes in Banach spaces, Proc. Lond. Math. Soc., 101 (2010), 697-726.
doi: 10.1112/plms/pdq004. |
[3] |
N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge: Cambridge University Press, 1989.
![]() |
[4] |
Z. Brzeźniak, B. Goldys, P. Imkeller, S. Peszat, E. Priola and J. Zabczyk,
Time irregularity of generalized Ornstein-Uhlenbeck processes, C. R. Math. Acad. Sci. Paris, 348 (2010), 273-276.
doi: 10.1016/j.crma.2010.01.022. |
[5] |
Z. Brzeźniak, W. Liu and J. Zhu,
Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal. Real World Appl., 17 (2014), 283-310.
doi: 10.1016/j.nonrwa.2013.12.005. |
[6] |
Z. Brzeźniak and J. Zabczyk,
Regularity of Ornstein-Uhlenbeck processes driven by a Lévy white noise, Potential Anal., 32 (2010), 153-188.
doi: 10.1007/s11118-009-9149-1. |
[7] |
P. Embrechts and C. M. Goldie,
Comparing the tail of an infinitely divisible distribution with integrals of its Lévy measure, Ann. Probab., 9 (1981), 468-481.
doi: 10.1214/aop/1176994419. |
[8] |
W. Feller, An Introduction to Probability Theory and Its Applications. Vol. Ⅱ, New York-London-Sydney: John Wiley & Sons, Inc., second edition, 1971. |
[9] |
I. Gyöngy,
On stochastic equations with respect to semimartingales. Ⅲ, Stochastics, 7 (1982), 231-254.
doi: 10.1080/17442508208833220. |
[10] |
I. Gyöngy and N. V. Krylov,
On stochastic equations with respect to semimartingales. I, Stochastics, 4 (1980/81), 1-21.
doi: 10.1080/03610918008833154. |
[11] |
I. Gyöngy and N. V. Krylov,
On stochastics equations with respect to semimartingales. Ⅱ. Itô formula in Banach spaces, Stochastics, 6 (1981/82), 153-173.
doi: 10.1080/17442508208833202. |
[12] |
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Amsterdam: North-Holland Publishing Co., 1981. |
[13] |
A. Jakubowski and M. Riedle,
Stochastic integration with respect to cylindrical Lévy processes, Ann. Probab., 45 (2017), 4273-4306.
doi: 10.1214/16-AOP1164. |
[14] |
T. Kosmala, Stochastic Partial Differential Equations Driven by Cylindrical Lévy Processes, PhD thesis, King's College London, 2020. Google Scholar |
[15] |
N. V. Krylov and B. L. Rozovskii, Stochastic evolution equations, Translated from Itogi Naukii Tekhniki, Seriya Sovremennye Problemy Matematiki, 14 (1979), 71–147. |
[16] |
U. Kumar and M. Riedle, Invariant measure for the stochastic Cauchy problem driven by a cylindrical Lévy process, 2019., Preprint available at https://arXiv.org/abs/1904.03118. Google Scholar |
[17] |
U. Kumar and M. Riedle, The stochastic Cauchy problem driven by a cylindrical Lévy process, Electron. J. Probab., 25 (2020), paper no. 10. Google Scholar |
[18] |
W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Cham: Springer, 2015.
doi: 10.1007/978-3-319-22354-4. |
[19] |
Y. Liu and J. Zhai,
A note on time regularity of generalized Ornstein-Uhlenbeck processes with cylindrical stable noise, C. R. Math. Acad. Sci. Paris, 350 (2012), 97-100.
doi: 10.1016/j.crma.2011.11.017. |
[20] |
M. Métivier, Semimartingales: A Course on Stochastic Processes, Berlin: Walter de Gruyter & Co., 1982. |
[21] |
S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise. An Evolution Equation Approach, Cambridge: Cambridge University Press, 2007.
doi: 10.1017/CBO9780511721373.![]() ![]() |
[22] |
S. Peszat and J. Zabczyk,
Time regularity of solutions to linear equations with Lévy noise in infinite dimensions, Stochastic Process. Appl., 123 (2013), 719-751.
doi: 10.1016/j.spa.2012.10.012. |
[23] |
C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Berlin: Springer, 2007. |
[24] |
E. Priola and J. Zabczyk, On linear evolution equations for a class of cylindrical Lévy noises, In Stochastic Partial Differential Equations and Applications, volume 25 of Quad. Mat., 223–242. Dept. Math., Seconda Univ. Napoli, Caserta, 2010. |
[25] |
E. Priola and J. Zabczyk,
Structural properties of semilinear SPDEs driven by cylindrical stable processes, Probab. Theory Related Fields, 149 (2011), 97-137.
doi: 10.1007/s00440-009-0243-5. |
[26] |
M. Riedle,
Infinitely divisible cylindrical measures on Banach spaces, Studia Math., 207 (2011), 235-256.
doi: 10.4064/sm207-3-2. |
[27] |
M. Riedle, Stochastic integration with respect to cylindrical Lévy processes in Hilbert spaces: an $L^2$ approach, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 17 (2014), 1450008, 19 pp.
doi: 10.1142/S0219025714500088. |
[28] |
M. Riedle,
Ornstein-Uhlenbeck processes driven by cylindrical Lévy processes, Potential Anal., 42 (2015), 809-838.
doi: 10.1007/s11118-014-9458-x. |
[29] |
G. Samorodnitsky, Stochastic Processes and Long Range Dependence, Cham: Springer, 2016.
doi: 10.1007/978-3-319-45575-4. |
[30] |
K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge: Cambridge University Press, 2013.
![]() |
[1] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[2] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[3] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[4] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[5] |
Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020388 |
[6] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[7] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[8] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[9] |
Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020179 |
[10] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020383 |
[11] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[12] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[13] |
Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167 |
[14] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[15] |
Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175 |
[16] |
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020323 |
[17] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[18] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[19] |
Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020376 |
[20] |
Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021008 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]