-
Previous Article
Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line
- DCDS-B Home
- This Issue
- Next Article
Variational solutions of stochastic partial differential equations with cylindrical Lévy noise
1. | School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK |
2. | Department of Mathematics, King's College London, London WC2R 2LS, UK |
3. | Institute of Mathematical Stochastics, Faculty of Mathematics, TU Dresden, 01062 Dresden, Germany |
$ \, \mathrm{d}X(t) = F(X(t)) \, \mathrm{d}t + G(X(t)) \, \mathrm{d}L(t) $ |
$ L $ |
$ F $ |
$ G $ |
References:
[1] |
D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge: Cambridge University Press, 2009.
doi: 10.1017/CBO9780511809781.![]() ![]() |
[2] |
D. Applebaum and M. Riedle,
Cylindrical Lévy processes in Banach spaces, Proc. Lond. Math. Soc., 101 (2010), 697-726.
doi: 10.1112/plms/pdq004. |
[3] |
N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge: Cambridge University Press, 1989.
![]() |
[4] |
Z. Brzeźniak, B. Goldys, P. Imkeller, S. Peszat, E. Priola and J. Zabczyk,
Time irregularity of generalized Ornstein-Uhlenbeck processes, C. R. Math. Acad. Sci. Paris, 348 (2010), 273-276.
doi: 10.1016/j.crma.2010.01.022. |
[5] |
Z. Brzeźniak, W. Liu and J. Zhu,
Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal. Real World Appl., 17 (2014), 283-310.
doi: 10.1016/j.nonrwa.2013.12.005. |
[6] |
Z. Brzeźniak and J. Zabczyk,
Regularity of Ornstein-Uhlenbeck processes driven by a Lévy white noise, Potential Anal., 32 (2010), 153-188.
doi: 10.1007/s11118-009-9149-1. |
[7] |
P. Embrechts and C. M. Goldie,
Comparing the tail of an infinitely divisible distribution with integrals of its Lévy measure, Ann. Probab., 9 (1981), 468-481.
doi: 10.1214/aop/1176994419. |
[8] |
W. Feller, An Introduction to Probability Theory and Its Applications. Vol. Ⅱ, New York-London-Sydney: John Wiley & Sons, Inc., second edition, 1971. |
[9] |
I. Gyöngy,
On stochastic equations with respect to semimartingales. Ⅲ, Stochastics, 7 (1982), 231-254.
doi: 10.1080/17442508208833220. |
[10] |
I. Gyöngy and N. V. Krylov,
On stochastic equations with respect to semimartingales. I, Stochastics, 4 (1980/81), 1-21.
doi: 10.1080/03610918008833154. |
[11] |
I. Gyöngy and N. V. Krylov,
On stochastics equations with respect to semimartingales. Ⅱ. Itô formula in Banach spaces, Stochastics, 6 (1981/82), 153-173.
doi: 10.1080/17442508208833202. |
[12] |
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Amsterdam: North-Holland Publishing Co., 1981. |
[13] |
A. Jakubowski and M. Riedle,
Stochastic integration with respect to cylindrical Lévy processes, Ann. Probab., 45 (2017), 4273-4306.
doi: 10.1214/16-AOP1164. |
[14] |
T. Kosmala, Stochastic Partial Differential Equations Driven by Cylindrical Lévy Processes, PhD thesis, King's College London, 2020. Google Scholar |
[15] |
N. V. Krylov and B. L. Rozovskii, Stochastic evolution equations, Translated from Itogi Naukii Tekhniki, Seriya Sovremennye Problemy Matematiki, 14 (1979), 71–147. |
[16] |
U. Kumar and M. Riedle, Invariant measure for the stochastic Cauchy problem driven by a cylindrical Lévy process, 2019., Preprint available at https://arXiv.org/abs/1904.03118. Google Scholar |
[17] |
U. Kumar and M. Riedle, The stochastic Cauchy problem driven by a cylindrical Lévy process, Electron. J. Probab., 25 (2020), paper no. 10. Google Scholar |
[18] |
W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Cham: Springer, 2015.
doi: 10.1007/978-3-319-22354-4. |
[19] |
Y. Liu and J. Zhai,
A note on time regularity of generalized Ornstein-Uhlenbeck processes with cylindrical stable noise, C. R. Math. Acad. Sci. Paris, 350 (2012), 97-100.
doi: 10.1016/j.crma.2011.11.017. |
[20] |
M. Métivier, Semimartingales: A Course on Stochastic Processes, Berlin: Walter de Gruyter & Co., 1982. |
[21] |
S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise. An Evolution Equation Approach, Cambridge: Cambridge University Press, 2007.
doi: 10.1017/CBO9780511721373.![]() ![]() |
[22] |
S. Peszat and J. Zabczyk,
Time regularity of solutions to linear equations with Lévy noise in infinite dimensions, Stochastic Process. Appl., 123 (2013), 719-751.
doi: 10.1016/j.spa.2012.10.012. |
[23] |
C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Berlin: Springer, 2007. |
[24] |
E. Priola and J. Zabczyk, On linear evolution equations for a class of cylindrical Lévy noises, In Stochastic Partial Differential Equations and Applications, volume 25 of Quad. Mat., 223–242. Dept. Math., Seconda Univ. Napoli, Caserta, 2010. |
[25] |
E. Priola and J. Zabczyk,
Structural properties of semilinear SPDEs driven by cylindrical stable processes, Probab. Theory Related Fields, 149 (2011), 97-137.
doi: 10.1007/s00440-009-0243-5. |
[26] |
M. Riedle,
Infinitely divisible cylindrical measures on Banach spaces, Studia Math., 207 (2011), 235-256.
doi: 10.4064/sm207-3-2. |
[27] |
M. Riedle, Stochastic integration with respect to cylindrical Lévy processes in Hilbert spaces: an $L^2$ approach, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 17 (2014), 1450008, 19 pp.
doi: 10.1142/S0219025714500088. |
[28] |
M. Riedle,
Ornstein-Uhlenbeck processes driven by cylindrical Lévy processes, Potential Anal., 42 (2015), 809-838.
doi: 10.1007/s11118-014-9458-x. |
[29] |
G. Samorodnitsky, Stochastic Processes and Long Range Dependence, Cham: Springer, 2016.
doi: 10.1007/978-3-319-45575-4. |
[30] |
K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge: Cambridge University Press, 2013.
![]() |
show all references
References:
[1] |
D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge: Cambridge University Press, 2009.
doi: 10.1017/CBO9780511809781.![]() ![]() |
[2] |
D. Applebaum and M. Riedle,
Cylindrical Lévy processes in Banach spaces, Proc. Lond. Math. Soc., 101 (2010), 697-726.
doi: 10.1112/plms/pdq004. |
[3] |
N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge: Cambridge University Press, 1989.
![]() |
[4] |
Z. Brzeźniak, B. Goldys, P. Imkeller, S. Peszat, E. Priola and J. Zabczyk,
Time irregularity of generalized Ornstein-Uhlenbeck processes, C. R. Math. Acad. Sci. Paris, 348 (2010), 273-276.
doi: 10.1016/j.crma.2010.01.022. |
[5] |
Z. Brzeźniak, W. Liu and J. Zhu,
Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal. Real World Appl., 17 (2014), 283-310.
doi: 10.1016/j.nonrwa.2013.12.005. |
[6] |
Z. Brzeźniak and J. Zabczyk,
Regularity of Ornstein-Uhlenbeck processes driven by a Lévy white noise, Potential Anal., 32 (2010), 153-188.
doi: 10.1007/s11118-009-9149-1. |
[7] |
P. Embrechts and C. M. Goldie,
Comparing the tail of an infinitely divisible distribution with integrals of its Lévy measure, Ann. Probab., 9 (1981), 468-481.
doi: 10.1214/aop/1176994419. |
[8] |
W. Feller, An Introduction to Probability Theory and Its Applications. Vol. Ⅱ, New York-London-Sydney: John Wiley & Sons, Inc., second edition, 1971. |
[9] |
I. Gyöngy,
On stochastic equations with respect to semimartingales. Ⅲ, Stochastics, 7 (1982), 231-254.
doi: 10.1080/17442508208833220. |
[10] |
I. Gyöngy and N. V. Krylov,
On stochastic equations with respect to semimartingales. I, Stochastics, 4 (1980/81), 1-21.
doi: 10.1080/03610918008833154. |
[11] |
I. Gyöngy and N. V. Krylov,
On stochastics equations with respect to semimartingales. Ⅱ. Itô formula in Banach spaces, Stochastics, 6 (1981/82), 153-173.
doi: 10.1080/17442508208833202. |
[12] |
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Amsterdam: North-Holland Publishing Co., 1981. |
[13] |
A. Jakubowski and M. Riedle,
Stochastic integration with respect to cylindrical Lévy processes, Ann. Probab., 45 (2017), 4273-4306.
doi: 10.1214/16-AOP1164. |
[14] |
T. Kosmala, Stochastic Partial Differential Equations Driven by Cylindrical Lévy Processes, PhD thesis, King's College London, 2020. Google Scholar |
[15] |
N. V. Krylov and B. L. Rozovskii, Stochastic evolution equations, Translated from Itogi Naukii Tekhniki, Seriya Sovremennye Problemy Matematiki, 14 (1979), 71–147. |
[16] |
U. Kumar and M. Riedle, Invariant measure for the stochastic Cauchy problem driven by a cylindrical Lévy process, 2019., Preprint available at https://arXiv.org/abs/1904.03118. Google Scholar |
[17] |
U. Kumar and M. Riedle, The stochastic Cauchy problem driven by a cylindrical Lévy process, Electron. J. Probab., 25 (2020), paper no. 10. Google Scholar |
[18] |
W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Cham: Springer, 2015.
doi: 10.1007/978-3-319-22354-4. |
[19] |
Y. Liu and J. Zhai,
A note on time regularity of generalized Ornstein-Uhlenbeck processes with cylindrical stable noise, C. R. Math. Acad. Sci. Paris, 350 (2012), 97-100.
doi: 10.1016/j.crma.2011.11.017. |
[20] |
M. Métivier, Semimartingales: A Course on Stochastic Processes, Berlin: Walter de Gruyter & Co., 1982. |
[21] |
S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise. An Evolution Equation Approach, Cambridge: Cambridge University Press, 2007.
doi: 10.1017/CBO9780511721373.![]() ![]() |
[22] |
S. Peszat and J. Zabczyk,
Time regularity of solutions to linear equations with Lévy noise in infinite dimensions, Stochastic Process. Appl., 123 (2013), 719-751.
doi: 10.1016/j.spa.2012.10.012. |
[23] |
C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Berlin: Springer, 2007. |
[24] |
E. Priola and J. Zabczyk, On linear evolution equations for a class of cylindrical Lévy noises, In Stochastic Partial Differential Equations and Applications, volume 25 of Quad. Mat., 223–242. Dept. Math., Seconda Univ. Napoli, Caserta, 2010. |
[25] |
E. Priola and J. Zabczyk,
Structural properties of semilinear SPDEs driven by cylindrical stable processes, Probab. Theory Related Fields, 149 (2011), 97-137.
doi: 10.1007/s00440-009-0243-5. |
[26] |
M. Riedle,
Infinitely divisible cylindrical measures on Banach spaces, Studia Math., 207 (2011), 235-256.
doi: 10.4064/sm207-3-2. |
[27] |
M. Riedle, Stochastic integration with respect to cylindrical Lévy processes in Hilbert spaces: an $L^2$ approach, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 17 (2014), 1450008, 19 pp.
doi: 10.1142/S0219025714500088. |
[28] |
M. Riedle,
Ornstein-Uhlenbeck processes driven by cylindrical Lévy processes, Potential Anal., 42 (2015), 809-838.
doi: 10.1007/s11118-014-9458-x. |
[29] |
G. Samorodnitsky, Stochastic Processes and Long Range Dependence, Cham: Springer, 2016.
doi: 10.1007/978-3-319-45575-4. |
[30] |
K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge: Cambridge University Press, 2013.
![]() |
[1] |
Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221 |
[2] |
Phuong Nguyen, Roger Temam. The stampacchia maximum principle for stochastic partial differential equations forced by lévy noise. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2289-2331. doi: 10.3934/cpaa.2020100 |
[3] |
Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097 |
[4] |
Justin Cyr, Phuong Nguyen, Roger Temam. Stochastic one layer shallow water equations with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3765-3818. doi: 10.3934/dcdsb.2018331 |
[5] |
Kumarasamy Sakthivel, Sivaguru S. Sritharan. Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise. Evolution Equations & Control Theory, 2012, 1 (2) : 355-392. doi: 10.3934/eect.2012.1.355 |
[6] |
Xueqin Li, Chao Tang, Tianmin Huang. Poisson $S^2$-almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3309-3345. doi: 10.3934/dcdsb.2018282 |
[7] |
Badr-eddine Berrhazi, Mohamed El Fatini, Tomás Caraballo, Roger Pettersson. A stochastic SIRI epidemic model with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2415-2431. doi: 10.3934/dcdsb.2018057 |
[8] |
Zhen Li, Jicheng Liu. Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5709-5736. doi: 10.3934/dcdsb.2019103 |
[9] |
Manil T. Mohan, Sivaguru S. Sritharan. $\mathbb{L}^p-$solutions of the stochastic Navier-Stokes equations subject to Lévy noise with $\mathbb{L}^m(\mathbb{R}^m)$ initial data. Evolution Equations & Control Theory, 2017, 6 (3) : 409-425. doi: 10.3934/eect.2017021 |
[10] |
Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515 |
[11] |
Markus Riedle, Jianliang Zhai. Large deviations for stochastic heat equations with memory driven by Lévy-type noise. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 1983-2005. doi: 10.3934/dcds.2018080 |
[12] |
Justin Cyr, Phuong Nguyen, Sisi Tang, Roger Temam. Review of local and global existence results for stochastic pdes with Lévy noise. Discrete & Continuous Dynamical Systems, 2020, 40 (10) : 5639-5710. doi: 10.3934/dcds.2020241 |
[13] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[14] |
Karel Kadlec, Bohdan Maslowski. Ergodic boundary and point control for linear stochastic PDEs driven by a cylindrical Lévy process. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 4039-4055. doi: 10.3934/dcdsb.2020137 |
[15] |
Nathan Glatt-Holtz, Roger Temam, Chuntian Wang. Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1047-1085. doi: 10.3934/dcdsb.2014.19.1047 |
[16] |
Hongjun Gao, Chengfeng Sun. Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3053-3073. doi: 10.3934/dcdsb.2016087 |
[17] |
T. Tachim Medjo. The exponential behavior of the stochastic primitive equations in two dimensional space with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 177-197. doi: 10.3934/dcdsb.2010.14.177 |
[18] |
Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269 |
[19] |
Nathan Glatt-Holtz, Mohammed Ziane. The stochastic primitive equations in two space dimensions with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 801-822. doi: 10.3934/dcdsb.2008.10.801 |
[20] |
Chi Phan. Random attractor for stochastic Hindmarsh-Rose equations with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3233-3256. doi: 10.3934/dcdsb.2020060 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]