• Previous Article
    Analytic solution to an interfacial flow with kinetic undercooling in a time-dependent gap Hele-Shaw cell
  • DCDS-B Home
  • This Issue
  • Next Article
    Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces
doi: 10.3934/dcdsb.2020209

Variational solutions of stochastic partial differential equations with cylindrical Lévy noise

1. 

School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK

2. 

Department of Mathematics, King's College London, London WC2R 2LS, UK

3. 

Institute of Mathematical Stochastics, Faculty of Mathematics, TU Dresden, 01062 Dresden, Germany

* Corresponding author: Markus Riedle

Received  December 2019 Revised  April 2020 Published  July 2020

In this article, the existence of a unique solution in the variational approach of the stochastic evolution equation
$ \, \mathrm{d}X(t) = F(X(t)) \, \mathrm{d}t + G(X(t)) \, \mathrm{d}L(t) $
driven by a cylindrical Lévy process
$ L $
is established. The coefficients
$ F $
and
$ G $
are assumed to satisfy the usual monotonicity and coercivity conditions. The noise is modelled by a cylindrical Lévy processes which is assumed to belong to a certain subclass of cylindrical Lévy processes and may not have finite moments.
Citation: Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020209
References:
[1] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge: Cambridge University Press, 2009.  doi: 10.1017/CBO9780511809781.  Google Scholar
[2]

D. Applebaum and M. Riedle, Cylindrical Lévy processes in Banach spaces, Proc. Lond. Math. Soc., 101 (2010), 697-726.  doi: 10.1112/plms/pdq004.  Google Scholar

[3] N. H. BinghamC. M. Goldie and J. L. Teugels, Regular Variation, Cambridge: Cambridge University Press, 1989.   Google Scholar
[4]

Z. BrzeźniakB. GoldysP. ImkellerS. PeszatE. Priola and J. Zabczyk, Time irregularity of generalized Ornstein-Uhlenbeck processes, C. R. Math. Acad. Sci. Paris, 348 (2010), 273-276.  doi: 10.1016/j.crma.2010.01.022.  Google Scholar

[5]

Z. BrzeźniakW. Liu and J. Zhu, Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal. Real World Appl., 17 (2014), 283-310.  doi: 10.1016/j.nonrwa.2013.12.005.  Google Scholar

[6]

Z. Brzeźniak and J. Zabczyk, Regularity of Ornstein-Uhlenbeck processes driven by a Lévy white noise, Potential Anal., 32 (2010), 153-188.  doi: 10.1007/s11118-009-9149-1.  Google Scholar

[7]

P. Embrechts and C. M. Goldie, Comparing the tail of an infinitely divisible distribution with integrals of its Lévy measure, Ann. Probab., 9 (1981), 468-481.  doi: 10.1214/aop/1176994419.  Google Scholar

[8]

W. Feller, An Introduction to Probability Theory and Its Applications. Vol. Ⅱ, New York-London-Sydney: John Wiley & Sons, Inc., second edition, 1971.  Google Scholar

[9]

I. Gyöngy, On stochastic equations with respect to semimartingales. Ⅲ, Stochastics, 7 (1982), 231-254.  doi: 10.1080/17442508208833220.  Google Scholar

[10]

I. Gyöngy and N. V. Krylov, On stochastic equations with respect to semimartingales. I, Stochastics, 4 (1980/81), 1-21.  doi: 10.1080/03610918008833154.  Google Scholar

[11]

I. Gyöngy and N. V. Krylov, On stochastics equations with respect to semimartingales. Ⅱ. Itô formula in Banach spaces, Stochastics, 6 (1981/82), 153-173.  doi: 10.1080/17442508208833202.  Google Scholar

[12]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Amsterdam: North-Holland Publishing Co., 1981.  Google Scholar

[13]

A. Jakubowski and M. Riedle, Stochastic integration with respect to cylindrical Lévy processes, Ann. Probab., 45 (2017), 4273-4306.  doi: 10.1214/16-AOP1164.  Google Scholar

[14]

T. Kosmala, Stochastic Partial Differential Equations Driven by Cylindrical Lévy Processes, PhD thesis, King's College London, 2020. Google Scholar

[15]

N. V. Krylov and B. L. Rozovskii, Stochastic evolution equations, Translated from Itogi Naukii Tekhniki, Seriya Sovremennye Problemy Matematiki, 14 (1979), 71–147.  Google Scholar

[16]

U. Kumar and M. Riedle, Invariant measure for the stochastic Cauchy problem driven by a cylindrical Lévy process, 2019., Preprint available at https://arXiv.org/abs/1904.03118. Google Scholar

[17]

U. Kumar and M. Riedle, The stochastic Cauchy problem driven by a cylindrical Lévy process, Electron. J. Probab., 25 (2020), paper no. 10. Google Scholar

[18]

W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Cham: Springer, 2015. doi: 10.1007/978-3-319-22354-4.  Google Scholar

[19]

Y. Liu and J. Zhai, A note on time regularity of generalized Ornstein-Uhlenbeck processes with cylindrical stable noise, C. R. Math. Acad. Sci. Paris, 350 (2012), 97-100.  doi: 10.1016/j.crma.2011.11.017.  Google Scholar

[20]

M. Métivier, Semimartingales: A Course on Stochastic Processes, Berlin: Walter de Gruyter & Co., 1982.  Google Scholar

[21] S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise. An Evolution Equation Approach, Cambridge: Cambridge University Press, 2007.  doi: 10.1017/CBO9780511721373.  Google Scholar
[22]

S. Peszat and J. Zabczyk, Time regularity of solutions to linear equations with Lévy noise in infinite dimensions, Stochastic Process. Appl., 123 (2013), 719-751.  doi: 10.1016/j.spa.2012.10.012.  Google Scholar

[23]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Berlin: Springer, 2007.  Google Scholar

[24]

E. Priola and J. Zabczyk, On linear evolution equations for a class of cylindrical Lévy noises, In Stochastic Partial Differential Equations and Applications, volume 25 of Quad. Mat., 223–242. Dept. Math., Seconda Univ. Napoli, Caserta, 2010.  Google Scholar

[25]

E. Priola and J. Zabczyk, Structural properties of semilinear SPDEs driven by cylindrical stable processes, Probab. Theory Related Fields, 149 (2011), 97-137.  doi: 10.1007/s00440-009-0243-5.  Google Scholar

[26]

M. Riedle, Infinitely divisible cylindrical measures on Banach spaces, Studia Math., 207 (2011), 235-256.  doi: 10.4064/sm207-3-2.  Google Scholar

[27]

M. Riedle, Stochastic integration with respect to cylindrical Lévy processes in Hilbert spaces: an $L^2$ approach, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 17 (2014), 1450008, 19 pp. doi: 10.1142/S0219025714500088.  Google Scholar

[28]

M. Riedle, Ornstein-Uhlenbeck processes driven by cylindrical Lévy processes, Potential Anal., 42 (2015), 809-838.  doi: 10.1007/s11118-014-9458-x.  Google Scholar

[29]

G. Samorodnitsky, Stochastic Processes and Long Range Dependence, Cham: Springer, 2016. doi: 10.1007/978-3-319-45575-4.  Google Scholar

[30] K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge: Cambridge University Press, 2013.   Google Scholar

show all references

References:
[1] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge: Cambridge University Press, 2009.  doi: 10.1017/CBO9780511809781.  Google Scholar
[2]

D. Applebaum and M. Riedle, Cylindrical Lévy processes in Banach spaces, Proc. Lond. Math. Soc., 101 (2010), 697-726.  doi: 10.1112/plms/pdq004.  Google Scholar

[3] N. H. BinghamC. M. Goldie and J. L. Teugels, Regular Variation, Cambridge: Cambridge University Press, 1989.   Google Scholar
[4]

Z. BrzeźniakB. GoldysP. ImkellerS. PeszatE. Priola and J. Zabczyk, Time irregularity of generalized Ornstein-Uhlenbeck processes, C. R. Math. Acad. Sci. Paris, 348 (2010), 273-276.  doi: 10.1016/j.crma.2010.01.022.  Google Scholar

[5]

Z. BrzeźniakW. Liu and J. Zhu, Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal. Real World Appl., 17 (2014), 283-310.  doi: 10.1016/j.nonrwa.2013.12.005.  Google Scholar

[6]

Z. Brzeźniak and J. Zabczyk, Regularity of Ornstein-Uhlenbeck processes driven by a Lévy white noise, Potential Anal., 32 (2010), 153-188.  doi: 10.1007/s11118-009-9149-1.  Google Scholar

[7]

P. Embrechts and C. M. Goldie, Comparing the tail of an infinitely divisible distribution with integrals of its Lévy measure, Ann. Probab., 9 (1981), 468-481.  doi: 10.1214/aop/1176994419.  Google Scholar

[8]

W. Feller, An Introduction to Probability Theory and Its Applications. Vol. Ⅱ, New York-London-Sydney: John Wiley & Sons, Inc., second edition, 1971.  Google Scholar

[9]

I. Gyöngy, On stochastic equations with respect to semimartingales. Ⅲ, Stochastics, 7 (1982), 231-254.  doi: 10.1080/17442508208833220.  Google Scholar

[10]

I. Gyöngy and N. V. Krylov, On stochastic equations with respect to semimartingales. I, Stochastics, 4 (1980/81), 1-21.  doi: 10.1080/03610918008833154.  Google Scholar

[11]

I. Gyöngy and N. V. Krylov, On stochastics equations with respect to semimartingales. Ⅱ. Itô formula in Banach spaces, Stochastics, 6 (1981/82), 153-173.  doi: 10.1080/17442508208833202.  Google Scholar

[12]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Amsterdam: North-Holland Publishing Co., 1981.  Google Scholar

[13]

A. Jakubowski and M. Riedle, Stochastic integration with respect to cylindrical Lévy processes, Ann. Probab., 45 (2017), 4273-4306.  doi: 10.1214/16-AOP1164.  Google Scholar

[14]

T. Kosmala, Stochastic Partial Differential Equations Driven by Cylindrical Lévy Processes, PhD thesis, King's College London, 2020. Google Scholar

[15]

N. V. Krylov and B. L. Rozovskii, Stochastic evolution equations, Translated from Itogi Naukii Tekhniki, Seriya Sovremennye Problemy Matematiki, 14 (1979), 71–147.  Google Scholar

[16]

U. Kumar and M. Riedle, Invariant measure for the stochastic Cauchy problem driven by a cylindrical Lévy process, 2019., Preprint available at https://arXiv.org/abs/1904.03118. Google Scholar

[17]

U. Kumar and M. Riedle, The stochastic Cauchy problem driven by a cylindrical Lévy process, Electron. J. Probab., 25 (2020), paper no. 10. Google Scholar

[18]

W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Cham: Springer, 2015. doi: 10.1007/978-3-319-22354-4.  Google Scholar

[19]

Y. Liu and J. Zhai, A note on time regularity of generalized Ornstein-Uhlenbeck processes with cylindrical stable noise, C. R. Math. Acad. Sci. Paris, 350 (2012), 97-100.  doi: 10.1016/j.crma.2011.11.017.  Google Scholar

[20]

M. Métivier, Semimartingales: A Course on Stochastic Processes, Berlin: Walter de Gruyter & Co., 1982.  Google Scholar

[21] S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise. An Evolution Equation Approach, Cambridge: Cambridge University Press, 2007.  doi: 10.1017/CBO9780511721373.  Google Scholar
[22]

S. Peszat and J. Zabczyk, Time regularity of solutions to linear equations with Lévy noise in infinite dimensions, Stochastic Process. Appl., 123 (2013), 719-751.  doi: 10.1016/j.spa.2012.10.012.  Google Scholar

[23]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Berlin: Springer, 2007.  Google Scholar

[24]

E. Priola and J. Zabczyk, On linear evolution equations for a class of cylindrical Lévy noises, In Stochastic Partial Differential Equations and Applications, volume 25 of Quad. Mat., 223–242. Dept. Math., Seconda Univ. Napoli, Caserta, 2010.  Google Scholar

[25]

E. Priola and J. Zabczyk, Structural properties of semilinear SPDEs driven by cylindrical stable processes, Probab. Theory Related Fields, 149 (2011), 97-137.  doi: 10.1007/s00440-009-0243-5.  Google Scholar

[26]

M. Riedle, Infinitely divisible cylindrical measures on Banach spaces, Studia Math., 207 (2011), 235-256.  doi: 10.4064/sm207-3-2.  Google Scholar

[27]

M. Riedle, Stochastic integration with respect to cylindrical Lévy processes in Hilbert spaces: an $L^2$ approach, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 17 (2014), 1450008, 19 pp. doi: 10.1142/S0219025714500088.  Google Scholar

[28]

M. Riedle, Ornstein-Uhlenbeck processes driven by cylindrical Lévy processes, Potential Anal., 42 (2015), 809-838.  doi: 10.1007/s11118-014-9458-x.  Google Scholar

[29]

G. Samorodnitsky, Stochastic Processes and Long Range Dependence, Cham: Springer, 2016. doi: 10.1007/978-3-319-45575-4.  Google Scholar

[30] K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge: Cambridge University Press, 2013.   Google Scholar
[1]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[4]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[5]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[6]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[7]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[8]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[9]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[10]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[11]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[12]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[13]

Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167

[14]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[15]

Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175

[16]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[17]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[18]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[19]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[20]

Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021008

2019 Impact Factor: 1.27

Article outline

[Back to Top]