doi: 10.3934/dcdsb.2020210

Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line

School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China

* Corresponding author: Haiyan Yin

Received  March 2020 Revised  May 2020 Published  July 2020

Fund Project: The authors were supported by the National Natural Science Foundation of China(Grant Nos. #11601164, #11601165 and #11971183), the Natural Science Foundation of Fujian Province of China(Grant No. 2017J05007), and the Fundamental Research Funds for the Central Universities(Grant No. ZQN-701), Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (Grant No. ZQN-PY602)

In this paper, we study the asymptotic behavior of solutions to the initial boundary value problem for the one-dimensional compressible isentropic micropolar fluid model in a half line $ \mathbb{R}_{+}: = (0, \infty). $ We mainly investigate the unique existence, the asymptotic stability and convergence rates of stationary solutions to the outflow problem for this model. We obtain the convergence rates of global solutions towards corresponding stationary solutions if the initial perturbation belongs to the weighted Sobolev space. The proof is based on the weighted energy method by taking into account the effect of the microrotational velocity on the viscous compressible fluid.

Citation: Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020210
References:
[1]

M. T. Chen, Global strong solutions for the viscous, micropolar, compressible flow, J. Partial Differ. Equ., 24 (2011), 158-164.  doi: 10.4208/jpde.v24.n2.5.  Google Scholar

[2]

M. T. Chen, Blowup criterion for viscous, compressible micropolar fluids with vacuum, Nonlinear Anal., Real World Appl., 13 (2012), 850–859. doi: 10.1016/j.nonrwa.2011.08.021.  Google Scholar

[3]

M. T. Chen, B. Huang and J. W. Zhang, Blowup criterion for the three-dimensional equations of compressible viscous micropolar fluids with vacuum, Nonlinear Anal., 79 (2013), 1–11. doi: 10.1016/j.na.2012.10.013.  Google Scholar

[4]

M. T. ChenX. Y. Xu and J. W. Zhang, Global weak solutions of 3D compressible micropolar fluids with discontinuous initial data and vacuum, Commun. Math. Sci., 13 (2015), 225-247.  doi: 10.4310/CMS.2015.v13.n1.a11.  Google Scholar

[5]

Q. L. Chen and C. X. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differential Equations, 252 (2012), 2698-2724.  doi: 10.1016/j.jde.2011.09.035.  Google Scholar

[6]

H. B. Cui and H. Y. Yin, Stability of the composite wave for the inflow problem on the micropolar fluid model, Commun. Pure Appl. Anal., 16 (2017), 1265-1292.  doi: 10.3934/cpaa.2017062.  Google Scholar

[7]

H. B. Cui and H. Y. Yin, Stationary solutions to the one-dimensional micropolar fluid model in a half line: existence, stability and convergence rate, J. Math. Anal. Appl., 449 (2017), 464-489.  doi: 10.1016/j.jmaa.2016.11.065.  Google Scholar

[8]

B. Q. DongJ. N. Li and J. H. Wu, Global well-posedness and large-time decay for the 2D micropolar equations, J. Differential Equations, 262 (2017), 3488-3523.  doi: 10.1016/j.jde.2016.11.029.  Google Scholar

[9]

I. Dra$\check{z}$i$\acute{c}$ and N. Mujakovi$\acute{c}$, 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: large time behavior of the solution, J. Math. Anal. Appl., 431 (2015), 545-568.  doi: 10.1016/j.jmaa.2015.06.002.  Google Scholar

[10]

I. Dra$\check{z}$i$\acute{c}$L. Sim$\check{c}$i$\acute{c}$ and N. Mujakovi$\acute{c}$, 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: Regularity of the solution, J. Math. Anal. Appl., 438 (2016), 162-183.  doi: 10.1016/j.jmaa.2016.01.071.  Google Scholar

[11]

R. Duan, Global solutions for a one-dimensional compressible micropolar fluid model with zero heat conductivity, J. Math. Anal. Appl., 463 (2018), 477-495.  doi: 10.1016/j.jmaa.2018.03.009.  Google Scholar

[12]

R. Duan, Global strong solution for initial-boundary value problem of one-dimensional compressible micropolar fluids with density dependent viscosity and temperature dependent heat conductivity, Nonlinear Anal. Real World Appl., 42 (2018), 71-92.  doi: 10.1016/j.nonrwa.2017.12.006.  Google Scholar

[13]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1–18. doi: 10.1512/iumj.1967.16.16001.  Google Scholar

[14]

[0-387-98620-0] A. C. Erigen, Microcontinuum Field Theories: I. Foundations and Solids, Springer. New York., 1999. doi: 10.1007/978-1-4612-0555-5.  Google Scholar

[15]

F. M. Huang and X. H. Qin, Stability of boundary layer and rarefaction wave to an outflow problem for compressible Navier-Stokes equations under large perturbation, J. Differential Equations, 246 (2009), 4077-4096.  doi: 10.1016/j.jde.2009.01.017.  Google Scholar

[16]

L. Huang and D. Y. Nie, Exponential stability for a one-dimensional compressible viscous micropolar fluid, Math. Methods Appl. Sci., 38 (2015), 5197–5206. doi: 10.1002/mma.3445.  Google Scholar

[17]

J. Jin and R. Duan, Stability of rarefaction waves for 1-D compressible viscous micropolar fluid model, J. Math. Anal. Appl., 450 (2017), 1123-1143.  doi: 10.1016/j.jmaa.2016.12.085.  Google Scholar

[18]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Comm. Math. Phys., 101 (1985), 97–127. doi: 10.1007/BF01212358.  Google Scholar

[19]

S. KawashimaT. NakamuraS. Nishibata and P. C. Zhu, Stationary waves to viscous heat-conductive gases in half space: Existence, stability and convergence rate, Math. Models Methods Appl. Sci., 20 (2010), 2201-2235.  doi: 10.1142/S0218202510004908.  Google Scholar

[20]

S. KawashimaS. Nishibata and P. C. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space, Comm. Math. Phys., 240 (2003), 483-500.  doi: 10.1007/s00220-003-0909-2.  Google Scholar

[21]

Q. Q. Liu and H. Y. Yin, Stability of contact discontinuity for 1-D compressible viscous micropolar fluid model, Nonlinear Anal.: Theory, Methods Appl., 149 (2017), 41-55.  doi: 10.1016/j.na.2016.10.009.  Google Scholar

[22]

Q. Q. Liu and P. X. Zhang, Optimal time decay of the compressible micropolar fluids, J. Differential Equations, 260 (2016), 7634–7661. doi: 10.1016/j.jde.2016.01.037.  Google Scholar

[23]

Q. Q. Liu and P. X. Zhang, Long-time behavior of solution to the compressible micropolar fluids with external force, Nonlinear Anal. Real World Appl., 40 (2018), 361-376.  doi: 10.1016/j.nonrwa.2017.08.007.  Google Scholar

[24]

[0-8176-4008-8] G. Lukaszewicz, Micropolar fluids. Theory and applications. Modeling and Simulation in Science, Engineering and Technology, Birkh${\rm{\ddot a}}$user, Baston, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[25]

A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas, Methods Appl. Anal., 8 (2001), 645-666.   Google Scholar

[26]

A. Matsumura and M. Mei, Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary, Arch. Ration. Mech. Anal., 146 (1999), 1-22.  doi: 10.1007/s002050050134.  Google Scholar

[27]

A. Matsumura and K. Nishihara, Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas, Comm. Math. Phys., 222 (2001), 449-474.  doi: 10.1007/s002200100517.  Google Scholar

[28]

N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: A local existence theorem, Glas. Mat. Ser. III, 33 (1998), 71–91.  Google Scholar

[29]

N. Mujakovi$\acute{c}$, One-dimensional flow of a compressible viscous micropolar fluid: A global existence theorem, Glas. Mat. Ser. III, 33 (1998), 199-208.   Google Scholar

[30]

N. Mujakovi$\acute{c}$, One-dimensional flow of a compressible viscous micropolar fluid: Regularity of the solution, Rad. Mat., 10 (2001), 181-193.   Google Scholar

[31]

N. Mujakovi$\acute{c}$, Global in time estimates for one-dimensional compressible viscous micropolar fluid model, Glas. Mat. Ser. III, 40 (2005), 103-120.  doi: 10.3336/gm.40.1.10.  Google Scholar

[32]

N. Mujakovi$\acute{c}$, One-dimensional flow of a compressible viscous micropolar fluid: Stabilization of the solution, Proceedings of the Conference on Applied Mathematics and Scientific Computing, 253–262, Springer, Dordrecht, 2005. doi: 10.1007/1-4020-3197-1_18.  Google Scholar

[33]

N. Mujakovi$\acute{c}$, Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: A local existence theorem, Ann. Univ. Ferrara Sez. VII Sci. Mat., 53 (2007), 361-379.  doi: 10.1007/s11565-007-0023-z.  Google Scholar

[34]

N. Mujakovi$\acute{c}$, Nonhomogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: Regularity of the solution, Bound. Value Probl., 2008 (2008), Article ID 189748, 15pp. doi: 10.1155/2008/189748.  Google Scholar

[35]

N. Mujakovi$\acute{c}$, Nonhomogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: A global existence theorem, Math. Inequal. Appl., 12 (2009), 651-662.  doi: 10.7153/mia-12-49.  Google Scholar

[36]

N. Mujakovi$\acute{c}$, One-dimensional compressible viscous micropolar fluid model: stabilization of the solution for the Cauchy problem, Bound. Value Probl., (2010), Article ID 796065, 21pp. doi: 10.1155/2010/796065.  Google Scholar

[37]

N. Mujakovi$\acute{c}$, The existence of a global solution for one dimensional compressible viscous micropolar fluid with non-homogeneous boundary conditions for temperature, Nonlinear Anal. Real World Appl., 19 (2014), 19-30.  doi: 10.1016/j.nonrwa.2014.02.006.  Google Scholar

[38]

T. NakamuraS. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line, J. Differential Equations, 241 (2007), 94-111.  doi: 10.1016/j.jde.2007.06.016.  Google Scholar

[39]

T. Nakamura and S. Nishibata, Stationary wave associated with an inflow problem in the half line for viscous heat-conductive gas, J. Hyperbolic Differ. Equ., 8 (2011), 651–670. doi: 10.1142/S0219891611002524.  Google Scholar

[40]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws, Funkcial. Ekvac., 41 (1998), 107–132.  Google Scholar

[41]

B. Nowakowski, Large time existence of strong solutions to micropolar equations in cylindrical domains, Nonlinear Anal. Real World Appl., 14 (2013), 635-660.  doi: 10.1016/j.nonrwa.2012.07.023.  Google Scholar

[42]

Y. QinT. Wang and G. Hu, The Cauchy problem for a 1D compressible viscous micropolar fluid model: Analysis of the stabilization and the regularity, Nonlinear Anal., Real World Appl., 13 (2012), 1010-1029.  doi: 10.1016/j.nonrwa.2010.10.023.  Google Scholar

[43]

Z. G. Wu and W. K. Wang, The pointwise estimates of diffusion wave of the compressible micropolar fluids, J. Differential Equations, 265 (2018), 2544-2576.  doi: 10.1016/j.jde.2018.04.039.  Google Scholar

[44]

H. Y. Yin, Stability of stationary solutions for inflow problem on the micropolar fluid model, Z. Angew. Math. Phys., 68 (2017), Paper No. 44, 13 pp. doi: 10.1007/s00033-017-0789-5.  Google Scholar

show all references

References:
[1]

M. T. Chen, Global strong solutions for the viscous, micropolar, compressible flow, J. Partial Differ. Equ., 24 (2011), 158-164.  doi: 10.4208/jpde.v24.n2.5.  Google Scholar

[2]

M. T. Chen, Blowup criterion for viscous, compressible micropolar fluids with vacuum, Nonlinear Anal., Real World Appl., 13 (2012), 850–859. doi: 10.1016/j.nonrwa.2011.08.021.  Google Scholar

[3]

M. T. Chen, B. Huang and J. W. Zhang, Blowup criterion for the three-dimensional equations of compressible viscous micropolar fluids with vacuum, Nonlinear Anal., 79 (2013), 1–11. doi: 10.1016/j.na.2012.10.013.  Google Scholar

[4]

M. T. ChenX. Y. Xu and J. W. Zhang, Global weak solutions of 3D compressible micropolar fluids with discontinuous initial data and vacuum, Commun. Math. Sci., 13 (2015), 225-247.  doi: 10.4310/CMS.2015.v13.n1.a11.  Google Scholar

[5]

Q. L. Chen and C. X. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differential Equations, 252 (2012), 2698-2724.  doi: 10.1016/j.jde.2011.09.035.  Google Scholar

[6]

H. B. Cui and H. Y. Yin, Stability of the composite wave for the inflow problem on the micropolar fluid model, Commun. Pure Appl. Anal., 16 (2017), 1265-1292.  doi: 10.3934/cpaa.2017062.  Google Scholar

[7]

H. B. Cui and H. Y. Yin, Stationary solutions to the one-dimensional micropolar fluid model in a half line: existence, stability and convergence rate, J. Math. Anal. Appl., 449 (2017), 464-489.  doi: 10.1016/j.jmaa.2016.11.065.  Google Scholar

[8]

B. Q. DongJ. N. Li and J. H. Wu, Global well-posedness and large-time decay for the 2D micropolar equations, J. Differential Equations, 262 (2017), 3488-3523.  doi: 10.1016/j.jde.2016.11.029.  Google Scholar

[9]

I. Dra$\check{z}$i$\acute{c}$ and N. Mujakovi$\acute{c}$, 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: large time behavior of the solution, J. Math. Anal. Appl., 431 (2015), 545-568.  doi: 10.1016/j.jmaa.2015.06.002.  Google Scholar

[10]

I. Dra$\check{z}$i$\acute{c}$L. Sim$\check{c}$i$\acute{c}$ and N. Mujakovi$\acute{c}$, 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: Regularity of the solution, J. Math. Anal. Appl., 438 (2016), 162-183.  doi: 10.1016/j.jmaa.2016.01.071.  Google Scholar

[11]

R. Duan, Global solutions for a one-dimensional compressible micropolar fluid model with zero heat conductivity, J. Math. Anal. Appl., 463 (2018), 477-495.  doi: 10.1016/j.jmaa.2018.03.009.  Google Scholar

[12]

R. Duan, Global strong solution for initial-boundary value problem of one-dimensional compressible micropolar fluids with density dependent viscosity and temperature dependent heat conductivity, Nonlinear Anal. Real World Appl., 42 (2018), 71-92.  doi: 10.1016/j.nonrwa.2017.12.006.  Google Scholar

[13]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1–18. doi: 10.1512/iumj.1967.16.16001.  Google Scholar

[14]

[0-387-98620-0] A. C. Erigen, Microcontinuum Field Theories: I. Foundations and Solids, Springer. New York., 1999. doi: 10.1007/978-1-4612-0555-5.  Google Scholar

[15]

F. M. Huang and X. H. Qin, Stability of boundary layer and rarefaction wave to an outflow problem for compressible Navier-Stokes equations under large perturbation, J. Differential Equations, 246 (2009), 4077-4096.  doi: 10.1016/j.jde.2009.01.017.  Google Scholar

[16]

L. Huang and D. Y. Nie, Exponential stability for a one-dimensional compressible viscous micropolar fluid, Math. Methods Appl. Sci., 38 (2015), 5197–5206. doi: 10.1002/mma.3445.  Google Scholar

[17]

J. Jin and R. Duan, Stability of rarefaction waves for 1-D compressible viscous micropolar fluid model, J. Math. Anal. Appl., 450 (2017), 1123-1143.  doi: 10.1016/j.jmaa.2016.12.085.  Google Scholar

[18]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Comm. Math. Phys., 101 (1985), 97–127. doi: 10.1007/BF01212358.  Google Scholar

[19]

S. KawashimaT. NakamuraS. Nishibata and P. C. Zhu, Stationary waves to viscous heat-conductive gases in half space: Existence, stability and convergence rate, Math. Models Methods Appl. Sci., 20 (2010), 2201-2235.  doi: 10.1142/S0218202510004908.  Google Scholar

[20]

S. KawashimaS. Nishibata and P. C. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space, Comm. Math. Phys., 240 (2003), 483-500.  doi: 10.1007/s00220-003-0909-2.  Google Scholar

[21]

Q. Q. Liu and H. Y. Yin, Stability of contact discontinuity for 1-D compressible viscous micropolar fluid model, Nonlinear Anal.: Theory, Methods Appl., 149 (2017), 41-55.  doi: 10.1016/j.na.2016.10.009.  Google Scholar

[22]

Q. Q. Liu and P. X. Zhang, Optimal time decay of the compressible micropolar fluids, J. Differential Equations, 260 (2016), 7634–7661. doi: 10.1016/j.jde.2016.01.037.  Google Scholar

[23]

Q. Q. Liu and P. X. Zhang, Long-time behavior of solution to the compressible micropolar fluids with external force, Nonlinear Anal. Real World Appl., 40 (2018), 361-376.  doi: 10.1016/j.nonrwa.2017.08.007.  Google Scholar

[24]

[0-8176-4008-8] G. Lukaszewicz, Micropolar fluids. Theory and applications. Modeling and Simulation in Science, Engineering and Technology, Birkh${\rm{\ddot a}}$user, Baston, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[25]

A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas, Methods Appl. Anal., 8 (2001), 645-666.   Google Scholar

[26]

A. Matsumura and M. Mei, Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary, Arch. Ration. Mech. Anal., 146 (1999), 1-22.  doi: 10.1007/s002050050134.  Google Scholar

[27]

A. Matsumura and K. Nishihara, Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas, Comm. Math. Phys., 222 (2001), 449-474.  doi: 10.1007/s002200100517.  Google Scholar

[28]

N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: A local existence theorem, Glas. Mat. Ser. III, 33 (1998), 71–91.  Google Scholar

[29]

N. Mujakovi$\acute{c}$, One-dimensional flow of a compressible viscous micropolar fluid: A global existence theorem, Glas. Mat. Ser. III, 33 (1998), 199-208.   Google Scholar

[30]

N. Mujakovi$\acute{c}$, One-dimensional flow of a compressible viscous micropolar fluid: Regularity of the solution, Rad. Mat., 10 (2001), 181-193.   Google Scholar

[31]

N. Mujakovi$\acute{c}$, Global in time estimates for one-dimensional compressible viscous micropolar fluid model, Glas. Mat. Ser. III, 40 (2005), 103-120.  doi: 10.3336/gm.40.1.10.  Google Scholar

[32]

N. Mujakovi$\acute{c}$, One-dimensional flow of a compressible viscous micropolar fluid: Stabilization of the solution, Proceedings of the Conference on Applied Mathematics and Scientific Computing, 253–262, Springer, Dordrecht, 2005. doi: 10.1007/1-4020-3197-1_18.  Google Scholar

[33]

N. Mujakovi$\acute{c}$, Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: A local existence theorem, Ann. Univ. Ferrara Sez. VII Sci. Mat., 53 (2007), 361-379.  doi: 10.1007/s11565-007-0023-z.  Google Scholar

[34]

N. Mujakovi$\acute{c}$, Nonhomogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: Regularity of the solution, Bound. Value Probl., 2008 (2008), Article ID 189748, 15pp. doi: 10.1155/2008/189748.  Google Scholar

[35]

N. Mujakovi$\acute{c}$, Nonhomogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: A global existence theorem, Math. Inequal. Appl., 12 (2009), 651-662.  doi: 10.7153/mia-12-49.  Google Scholar

[36]

N. Mujakovi$\acute{c}$, One-dimensional compressible viscous micropolar fluid model: stabilization of the solution for the Cauchy problem, Bound. Value Probl., (2010), Article ID 796065, 21pp. doi: 10.1155/2010/796065.  Google Scholar

[37]

N. Mujakovi$\acute{c}$, The existence of a global solution for one dimensional compressible viscous micropolar fluid with non-homogeneous boundary conditions for temperature, Nonlinear Anal. Real World Appl., 19 (2014), 19-30.  doi: 10.1016/j.nonrwa.2014.02.006.  Google Scholar

[38]

T. NakamuraS. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line, J. Differential Equations, 241 (2007), 94-111.  doi: 10.1016/j.jde.2007.06.016.  Google Scholar

[39]

T. Nakamura and S. Nishibata, Stationary wave associated with an inflow problem in the half line for viscous heat-conductive gas, J. Hyperbolic Differ. Equ., 8 (2011), 651–670. doi: 10.1142/S0219891611002524.  Google Scholar

[40]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws, Funkcial. Ekvac., 41 (1998), 107–132.  Google Scholar

[41]

B. Nowakowski, Large time existence of strong solutions to micropolar equations in cylindrical domains, Nonlinear Anal. Real World Appl., 14 (2013), 635-660.  doi: 10.1016/j.nonrwa.2012.07.023.  Google Scholar

[42]

Y. QinT. Wang and G. Hu, The Cauchy problem for a 1D compressible viscous micropolar fluid model: Analysis of the stabilization and the regularity, Nonlinear Anal., Real World Appl., 13 (2012), 1010-1029.  doi: 10.1016/j.nonrwa.2010.10.023.  Google Scholar

[43]

Z. G. Wu and W. K. Wang, The pointwise estimates of diffusion wave of the compressible micropolar fluids, J. Differential Equations, 265 (2018), 2544-2576.  doi: 10.1016/j.jde.2018.04.039.  Google Scholar

[44]

H. Y. Yin, Stability of stationary solutions for inflow problem on the micropolar fluid model, Z. Angew. Math. Phys., 68 (2017), Paper No. 44, 13 pp. doi: 10.1007/s00033-017-0789-5.  Google Scholar

[1]

Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021021

[2]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[3]

Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189

[4]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[5]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[6]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[7]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[8]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[9]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[10]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[11]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[12]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[13]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[14]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

[15]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021005

[16]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[17]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[18]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[19]

Paul E. Anderson, Timothy P. Chartier, Amy N. Langville, Kathryn E. Pedings-Behling. The rankability of weighted data from pairwise comparisons. Foundations of Data Science, 2021  doi: 10.3934/fods.2021002

[20]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (31)
  • HTML views (197)
  • Cited by (0)

Other articles
by authors

[Back to Top]